Loading…
A Novel Covert Agent for Stealthy Attacks on Industrial Control Systems Using Least Squares Support Vector Regression
Research on stealthiness has become an important topic in the field of data integrity (DI) attacks. To construct stealthy DI attacks, a common assumption in most related studies is that attackers have prior model knowledge of physical systems. In this paper, such assumption is relaxed and a covert a...
Saved in:
Published in: | Journal of electrical and computer engineering 2018-01, Vol.2018 (2018), p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Research on stealthiness has become an important topic in the field of data integrity (DI) attacks. To construct stealthy DI attacks, a common assumption in most related studies is that attackers have prior model knowledge of physical systems. In this paper, such assumption is relaxed and a covert agent is proposed based on the least squares support vector regression (LSSVR). By estimating a plant model from control and sensory data, the LSSVR-based covert agent can closely imitate the behavior of the physical plant. Then, the covert agent is used to construct a covert loop, which can keep the controller’s input and output both stealthy over a finite time window. Experiments have been carried out to show the effectiveness of the proposed method. |
---|---|
ISSN: | 2090-0147 2090-0155 |
DOI: | 10.1155/2018/7204939 |