Loading…

Modelling to Engineering Data Using a New Class of Continuous Models

In this paper, a new flexible generator of continuous lifespan models referred to as the Topp-Leone Weibull G (TLWG) family is developed and studied. Several mathematical characteristics have been investigated. The new hazard rate of the new model can be “monotonically increasing,” “monotonically de...

Full description

Saved in:
Bibliographic Details
Published in:Journal of function spaces 2021, Vol.2021, p.1-12
Main Authors: Elbatal, I., Alotaibi, Naif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2758-b189aa5c5bfcd07e19b73f05753972e039011e71b828882184a0e3c9eea629f53
container_end_page 12
container_issue
container_start_page 1
container_title Journal of function spaces
container_volume 2021
creator Elbatal, I.
Alotaibi, Naif
description In this paper, a new flexible generator of continuous lifespan models referred to as the Topp-Leone Weibull G (TLWG) family is developed and studied. Several mathematical characteristics have been investigated. The new hazard rate of the new model can be “monotonically increasing,” “monotonically decreasing,” “bathtub,” and “J shape.” The Farlie Gumbel Morgenstern (FGM) and the modified FGM (MFGM) families and Clayton Copula (CCO) are used to describe and display simple type Copula. We discuss the estimation of the model parameters by the maximum likelihood (MLL) estimations. Simulations are carried out to show the consistency and efficiency of parameter estimates, and finally, real data sets are used to demonstrate the flexibility and potential usefulness of the proposed family of algorithms by using the TLW exponential model as example of the new suggested family.
doi_str_mv 10.1155/2021/1148618
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_09d594a5740a4d8abaf6685dfeb79a79</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_09d594a5740a4d8abaf6685dfeb79a79</doaj_id><sourcerecordid>2606662594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2758-b189aa5c5bfcd07e19b73f05753972e039011e71b828882184a0e3c9eea629f53</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EElXpjQeIxBFCbSf-O6K0QKUCF3q2NolTXIW42Ikq3p6kqXpkL7u2vp0dDUK3BD8SwticYkrmhKSSE3mBJjQhaSz7ujzPil-jWQg7jDEhiqSMTdDizZWmrm2zjVoXLZutbYzxw3MBLUSbMIwQvZtDlNUQQuSqKHNNa5vOdSE6bocbdFVBHczs1Kdo87z8zF7j9cfLKntaxwUVTMY5kQqAFSyvihILQ1QukgozwRIlqMGJ6n0ZQXJJe9-UyBSwSQplDHCqKpZM0WrULR3s9N7bb_C_2oHVxw_ntxp8a4vaaKxKplJgIsWQlhJyqDiXrKxMLhQI1WvdjVp77346E1q9c51vevuacsw5p_1-Tz2MVOFdCN5U56sE6yF2PcSuT7H3-P2If9mmhIP9n_4DuKd-ew</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606662594</pqid></control><display><type>article</type><title>Modelling to Engineering Data Using a New Class of Continuous Models</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Elbatal, I. ; Alotaibi, Naif</creator><contributor>Saad. T. Alkaltani, Badr</contributor><creatorcontrib>Elbatal, I. ; Alotaibi, Naif ; Saad. T. Alkaltani, Badr</creatorcontrib><description>In this paper, a new flexible generator of continuous lifespan models referred to as the Topp-Leone Weibull G (TLWG) family is developed and studied. Several mathematical characteristics have been investigated. The new hazard rate of the new model can be “monotonically increasing,” “monotonically decreasing,” “bathtub,” and “J shape.” The Farlie Gumbel Morgenstern (FGM) and the modified FGM (MFGM) families and Clayton Copula (CCO) are used to describe and display simple type Copula. We discuss the estimation of the model parameters by the maximum likelihood (MLL) estimations. Simulations are carried out to show the consistency and efficiency of parameter estimates, and finally, real data sets are used to demonstrate the flexibility and potential usefulness of the proposed family of algorithms by using the TLW exponential model as example of the new suggested family.</description><identifier>ISSN: 2314-8896</identifier><identifier>EISSN: 2314-8888</identifier><identifier>DOI: 10.1155/2021/1148618</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Aging ; Algorithms ; Life span ; Mathematical models ; Parameter estimation ; Random variables</subject><ispartof>Journal of function spaces, 2021, Vol.2021, p.1-12</ispartof><rights>Copyright © 2021 I. Elbatal and Naif Alotaibi.</rights><rights>Copyright © 2021 I. Elbatal and Naif Alotaibi. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2758-b189aa5c5bfcd07e19b73f05753972e039011e71b828882184a0e3c9eea629f53</cites><orcidid>0000-0003-3479-5967 ; 0000-0002-6789-3363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2606662594/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2606662594?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Saad. T. Alkaltani, Badr</contributor><creatorcontrib>Elbatal, I.</creatorcontrib><creatorcontrib>Alotaibi, Naif</creatorcontrib><title>Modelling to Engineering Data Using a New Class of Continuous Models</title><title>Journal of function spaces</title><description>In this paper, a new flexible generator of continuous lifespan models referred to as the Topp-Leone Weibull G (TLWG) family is developed and studied. Several mathematical characteristics have been investigated. The new hazard rate of the new model can be “monotonically increasing,” “monotonically decreasing,” “bathtub,” and “J shape.” The Farlie Gumbel Morgenstern (FGM) and the modified FGM (MFGM) families and Clayton Copula (CCO) are used to describe and display simple type Copula. We discuss the estimation of the model parameters by the maximum likelihood (MLL) estimations. Simulations are carried out to show the consistency and efficiency of parameter estimates, and finally, real data sets are used to demonstrate the flexibility and potential usefulness of the proposed family of algorithms by using the TLW exponential model as example of the new suggested family.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Life span</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Random variables</subject><issn>2314-8896</issn><issn>2314-8888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kM1OwzAQhC0EElXpjQeIxBFCbSf-O6K0QKUCF3q2NolTXIW42Ikq3p6kqXpkL7u2vp0dDUK3BD8SwticYkrmhKSSE3mBJjQhaSz7ujzPil-jWQg7jDEhiqSMTdDizZWmrm2zjVoXLZutbYzxw3MBLUSbMIwQvZtDlNUQQuSqKHNNa5vOdSE6bocbdFVBHczs1Kdo87z8zF7j9cfLKntaxwUVTMY5kQqAFSyvihILQ1QukgozwRIlqMGJ6n0ZQXJJe9-UyBSwSQplDHCqKpZM0WrULR3s9N7bb_C_2oHVxw_ntxp8a4vaaKxKplJgIsWQlhJyqDiXrKxMLhQI1WvdjVp77346E1q9c51vevuacsw5p_1-Tz2MVOFdCN5U56sE6yF2PcSuT7H3-P2If9mmhIP9n_4DuKd-ew</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Elbatal, I.</creator><creator>Alotaibi, Naif</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3479-5967</orcidid><orcidid>https://orcid.org/0000-0002-6789-3363</orcidid></search><sort><creationdate>2021</creationdate><title>Modelling to Engineering Data Using a New Class of Continuous Models</title><author>Elbatal, I. ; Alotaibi, Naif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2758-b189aa5c5bfcd07e19b73f05753972e039011e71b828882184a0e3c9eea629f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Life span</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbatal, I.</creatorcontrib><creatorcontrib>Alotaibi, Naif</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Journal of function spaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbatal, I.</au><au>Alotaibi, Naif</au><au>Saad. T. Alkaltani, Badr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling to Engineering Data Using a New Class of Continuous Models</atitle><jtitle>Journal of function spaces</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2314-8896</issn><eissn>2314-8888</eissn><abstract>In this paper, a new flexible generator of continuous lifespan models referred to as the Topp-Leone Weibull G (TLWG) family is developed and studied. Several mathematical characteristics have been investigated. The new hazard rate of the new model can be “monotonically increasing,” “monotonically decreasing,” “bathtub,” and “J shape.” The Farlie Gumbel Morgenstern (FGM) and the modified FGM (MFGM) families and Clayton Copula (CCO) are used to describe and display simple type Copula. We discuss the estimation of the model parameters by the maximum likelihood (MLL) estimations. Simulations are carried out to show the consistency and efficiency of parameter estimates, and finally, real data sets are used to demonstrate the flexibility and potential usefulness of the proposed family of algorithms by using the TLW exponential model as example of the new suggested family.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/1148618</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3479-5967</orcidid><orcidid>https://orcid.org/0000-0002-6789-3363</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-8896
ispartof Journal of function spaces, 2021, Vol.2021, p.1-12
issn 2314-8896
2314-8888
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_09d594a5740a4d8abaf6685dfeb79a79
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest)
subjects Aging
Algorithms
Life span
Mathematical models
Parameter estimation
Random variables
title Modelling to Engineering Data Using a New Class of Continuous Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20to%20Engineering%20Data%20Using%20a%20New%20Class%20of%20Continuous%20Models&rft.jtitle=Journal%20of%20function%20spaces&rft.au=Elbatal,%20I.&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2314-8896&rft.eissn=2314-8888&rft_id=info:doi/10.1155/2021/1148618&rft_dat=%3Cproquest_doaj_%3E2606662594%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2758-b189aa5c5bfcd07e19b73f05753972e039011e71b828882184a0e3c9eea629f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2606662594&rft_id=info:pmid/&rfr_iscdi=true