Loading…

Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants

The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal m...

Full description

Saved in:
Bibliographic Details
Published in:BMC microbiology 2023-07, Vol.23 (1), p.174-12, Article 174
Main Authors: Rachmühl, Carole, Lacroix, Christophe, Giorgetti, Ambra, Stoffel, Nicole U, Zimmermann, Michael B, Brittenham, Gary M, Geirnaert, Annelies
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203
cites cdi_FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203
container_end_page 12
container_issue 1
container_start_page 174
container_title BMC microbiology
container_volume 23
creator Rachmühl, Carole
Lacroix, Christophe
Giorgetti, Ambra
Stoffel, Nicole U
Zimmermann, Michael B
Brittenham, Gary M
Geirnaert, Annelies
description The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal microbiota was validated. Fresh fecal samples were collected from 10 infants living in a rural area of Kenya. Samples were transported under protective conditions and subsequently prepared for inoculation within less than 30 h for batch cultivation. A diet-adapted cultivation medium was used that mimicked the daily intake of human milk and maize porridge in Kenyan infants during weaning. 16 S rRNA gene amplicon sequencing and HPLC analyses were performed to assess the composition and metabolic activity, respectively, of the fecal microbiota after 24 h of batch cultivation. High abundance of Bifidobacterium (53.4 ± 11.1%) and high proportions of acetate (56 ± 11% of total metabolites) and lactate (24 ± 22% of total metabolites) were detected in the Kenyan infant fecal microbiota. After cultivation started at an initial pH 7.6, the fraction of top bacterial genera (≥ 1% abundant) shared between fermentation and fecal samples was high at 97 ± 5%. However, Escherichia-Shigella, Clostridium sensu stricto 1, Bacteroides and Enterococcus were enriched concomitant with decreased Bifidobacterium abundance. Decreasing the initial pH to 6.9 lead to higher abundance of Bifidobacterium after incubation and increased the compositional similarity of fermentation and fecal samples. Despite similar total metabolite production of all fecal microbiota after cultivation, inter-individual differences in metabolite profiles were apparent. Protected transport and batch cultivation in host and diet adapted conditions allowed regrowth of the top abundant genera and reproduction of the metabolic activity of fresh Kenyan infant fecal microbiota. The validated batch cultivation protocol can be used to study the composition and functional potential of Kenyan infant fecal microbiota in vitro.
doi_str_mv 10.1186/s12866-023-02915-9
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a0dd93e6e56414eadc7f04ac7348cf8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A755889188</galeid><doaj_id>oai_doaj_org_article_0a0dd93e6e56414eadc7f04ac7348cf8</doaj_id><sourcerecordid>A755889188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203</originalsourceid><addsrcrecordid>eNptkktv1DAUhSMEoqXwB1igSGxgkWLHz6xQVVEYUQnx3Fo3zs3Uo0w8tZ2q_fc4TSkdhKzY0c05n53rUxQvKTmmVMt3kdZayorULD8NFVXzqDikXNGqppo8fvB-UDyLcUMIVZqpp8UBU5wwUvPD4usvGFwHyfmx9H0JZQvJXpR2GpK7Wsq74JO3fih7H8oeLQzl1tngW-cTzKbPON7AWLqxhzHF58WTHoaIL-7Wo-Ln2Ycfp5-q8y8fV6cn55UVjU4VJy1FolvaWpGhvSRS1aiFVYpTTluGDdNCCtXVyLjoMM8arFBStVzXhB0Vq4XbediYXXBbCDfGgzO3BR_WBkJydkBDgHRdw1CikBmO0FnVEw5WZabtdWa9X1i7qd1iZ3FMAYY96P6X0V2Ytb8ylDCqlZ5P8-aOEPzlhDGZrYsWhwFG9FM0tWZMctkImqWv_5Fu_BTG3KtZpZUimsu_qjXkP8i99XljO0PNiRJC64bq-eDH_1Hl0WG-Iz9i73J9z_B2z5A1Ca_TGqYYzer7t31tvWjzZccYsL9vCCVmTqBZEmhyAs1tAk2TTa8etvLe8idy7Ddxg9QQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838770846</pqid></control><display><type>article</type><title>Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Rachmühl, Carole ; Lacroix, Christophe ; Giorgetti, Ambra ; Stoffel, Nicole U ; Zimmermann, Michael B ; Brittenham, Gary M ; Geirnaert, Annelies</creator><creatorcontrib>Rachmühl, Carole ; Lacroix, Christophe ; Giorgetti, Ambra ; Stoffel, Nicole U ; Zimmermann, Michael B ; Brittenham, Gary M ; Geirnaert, Annelies</creatorcontrib><description>The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal microbiota was validated. Fresh fecal samples were collected from 10 infants living in a rural area of Kenya. Samples were transported under protective conditions and subsequently prepared for inoculation within less than 30 h for batch cultivation. A diet-adapted cultivation medium was used that mimicked the daily intake of human milk and maize porridge in Kenyan infants during weaning. 16 S rRNA gene amplicon sequencing and HPLC analyses were performed to assess the composition and metabolic activity, respectively, of the fecal microbiota after 24 h of batch cultivation. High abundance of Bifidobacterium (53.4 ± 11.1%) and high proportions of acetate (56 ± 11% of total metabolites) and lactate (24 ± 22% of total metabolites) were detected in the Kenyan infant fecal microbiota. After cultivation started at an initial pH 7.6, the fraction of top bacterial genera (≥ 1% abundant) shared between fermentation and fecal samples was high at 97 ± 5%. However, Escherichia-Shigella, Clostridium sensu stricto 1, Bacteroides and Enterococcus were enriched concomitant with decreased Bifidobacterium abundance. Decreasing the initial pH to 6.9 lead to higher abundance of Bifidobacterium after incubation and increased the compositional similarity of fermentation and fecal samples. Despite similar total metabolite production of all fecal microbiota after cultivation, inter-individual differences in metabolite profiles were apparent. Protected transport and batch cultivation in host and diet adapted conditions allowed regrowth of the top abundant genera and reproduction of the metabolic activity of fresh Kenyan infant fecal microbiota. The validated batch cultivation protocol can be used to study the composition and functional potential of Kenyan infant fecal microbiota in vitro.</description><identifier>ISSN: 1471-2180</identifier><identifier>EISSN: 1471-2180</identifier><identifier>DOI: 10.1186/s12866-023-02915-9</identifier><identifier>PMID: 37403024</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Abundance ; Acetic acid ; African infant ; Babies ; Bacteria ; Bacteria - genetics ; Bacteriology ; Bifidobacterium ; Breast milk ; Breastfeeding &amp; lactation ; Composition ; Cultivation ; Cultures and culture media ; Diet ; Fecal microflora ; Fecal sample preservation ; Feces ; Feces - microbiology ; Fermentation ; Gene sequencing ; Health aspects ; Humans ; In vitro gut fermentation ; Infant ; Infants ; Inoculation ; Intestinal microflora ; Kenya ; Liquid chromatography ; Metabolites ; Methods ; Microbiological research ; Microbiota ; Microorganisms ; Milk ; Milk, Human ; Proteins ; Regrowth ; RNA, Ribosomal, 16S - analysis ; RNA, Ribosomal, 16S - genetics ; rRNA ; Rural areas ; Weaning</subject><ispartof>BMC microbiology, 2023-07, Vol.23 (1), p.174-12, Article 174</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203</citedby><cites>FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318780/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2838770846?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37403024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rachmühl, Carole</creatorcontrib><creatorcontrib>Lacroix, Christophe</creatorcontrib><creatorcontrib>Giorgetti, Ambra</creatorcontrib><creatorcontrib>Stoffel, Nicole U</creatorcontrib><creatorcontrib>Zimmermann, Michael B</creatorcontrib><creatorcontrib>Brittenham, Gary M</creatorcontrib><creatorcontrib>Geirnaert, Annelies</creatorcontrib><title>Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants</title><title>BMC microbiology</title><addtitle>BMC Microbiol</addtitle><description>The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal microbiota was validated. Fresh fecal samples were collected from 10 infants living in a rural area of Kenya. Samples were transported under protective conditions and subsequently prepared for inoculation within less than 30 h for batch cultivation. A diet-adapted cultivation medium was used that mimicked the daily intake of human milk and maize porridge in Kenyan infants during weaning. 16 S rRNA gene amplicon sequencing and HPLC analyses were performed to assess the composition and metabolic activity, respectively, of the fecal microbiota after 24 h of batch cultivation. High abundance of Bifidobacterium (53.4 ± 11.1%) and high proportions of acetate (56 ± 11% of total metabolites) and lactate (24 ± 22% of total metabolites) were detected in the Kenyan infant fecal microbiota. After cultivation started at an initial pH 7.6, the fraction of top bacterial genera (≥ 1% abundant) shared between fermentation and fecal samples was high at 97 ± 5%. However, Escherichia-Shigella, Clostridium sensu stricto 1, Bacteroides and Enterococcus were enriched concomitant with decreased Bifidobacterium abundance. Decreasing the initial pH to 6.9 lead to higher abundance of Bifidobacterium after incubation and increased the compositional similarity of fermentation and fecal samples. Despite similar total metabolite production of all fecal microbiota after cultivation, inter-individual differences in metabolite profiles were apparent. Protected transport and batch cultivation in host and diet adapted conditions allowed regrowth of the top abundant genera and reproduction of the metabolic activity of fresh Kenyan infant fecal microbiota. The validated batch cultivation protocol can be used to study the composition and functional potential of Kenyan infant fecal microbiota in vitro.</description><subject>Abundance</subject><subject>Acetic acid</subject><subject>African infant</subject><subject>Babies</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteriology</subject><subject>Bifidobacterium</subject><subject>Breast milk</subject><subject>Breastfeeding &amp; lactation</subject><subject>Composition</subject><subject>Cultivation</subject><subject>Cultures and culture media</subject><subject>Diet</subject><subject>Fecal microflora</subject><subject>Fecal sample preservation</subject><subject>Feces</subject><subject>Feces - microbiology</subject><subject>Fermentation</subject><subject>Gene sequencing</subject><subject>Health aspects</subject><subject>Humans</subject><subject>In vitro gut fermentation</subject><subject>Infant</subject><subject>Infants</subject><subject>Inoculation</subject><subject>Intestinal microflora</subject><subject>Kenya</subject><subject>Liquid chromatography</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Microbiological research</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Milk</subject><subject>Milk, Human</subject><subject>Proteins</subject><subject>Regrowth</subject><subject>RNA, Ribosomal, 16S - analysis</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA</subject><subject>Rural areas</subject><subject>Weaning</subject><issn>1471-2180</issn><issn>1471-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAUhSMEoqXwB1igSGxgkWLHz6xQVVEYUQnx3Fo3zs3Uo0w8tZ2q_fc4TSkdhKzY0c05n53rUxQvKTmmVMt3kdZayorULD8NFVXzqDikXNGqppo8fvB-UDyLcUMIVZqpp8UBU5wwUvPD4usvGFwHyfmx9H0JZQvJXpR2GpK7Wsq74JO3fih7H8oeLQzl1tngW-cTzKbPON7AWLqxhzHF58WTHoaIL-7Wo-Ln2Ycfp5-q8y8fV6cn55UVjU4VJy1FolvaWpGhvSRS1aiFVYpTTluGDdNCCtXVyLjoMM8arFBStVzXhB0Vq4XbediYXXBbCDfGgzO3BR_WBkJydkBDgHRdw1CikBmO0FnVEw5WZabtdWa9X1i7qd1iZ3FMAYY96P6X0V2Ytb8ylDCqlZ5P8-aOEPzlhDGZrYsWhwFG9FM0tWZMctkImqWv_5Fu_BTG3KtZpZUimsu_qjXkP8i99XljO0PNiRJC64bq-eDH_1Hl0WG-Iz9i73J9z_B2z5A1Ca_TGqYYzer7t31tvWjzZccYsL9vCCVmTqBZEmhyAs1tAk2TTa8etvLe8idy7Ddxg9QQ</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>Rachmühl, Carole</creator><creator>Lacroix, Christophe</creator><creator>Giorgetti, Ambra</creator><creator>Stoffel, Nicole U</creator><creator>Zimmermann, Michael B</creator><creator>Brittenham, Gary M</creator><creator>Geirnaert, Annelies</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230704</creationdate><title>Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants</title><author>Rachmühl, Carole ; Lacroix, Christophe ; Giorgetti, Ambra ; Stoffel, Nicole U ; Zimmermann, Michael B ; Brittenham, Gary M ; Geirnaert, Annelies</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abundance</topic><topic>Acetic acid</topic><topic>African infant</topic><topic>Babies</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteriology</topic><topic>Bifidobacterium</topic><topic>Breast milk</topic><topic>Breastfeeding &amp; lactation</topic><topic>Composition</topic><topic>Cultivation</topic><topic>Cultures and culture media</topic><topic>Diet</topic><topic>Fecal microflora</topic><topic>Fecal sample preservation</topic><topic>Feces</topic><topic>Feces - microbiology</topic><topic>Fermentation</topic><topic>Gene sequencing</topic><topic>Health aspects</topic><topic>Humans</topic><topic>In vitro gut fermentation</topic><topic>Infant</topic><topic>Infants</topic><topic>Inoculation</topic><topic>Intestinal microflora</topic><topic>Kenya</topic><topic>Liquid chromatography</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Microbiological research</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Milk</topic><topic>Milk, Human</topic><topic>Proteins</topic><topic>Regrowth</topic><topic>RNA, Ribosomal, 16S - analysis</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA</topic><topic>Rural areas</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rachmühl, Carole</creatorcontrib><creatorcontrib>Lacroix, Christophe</creatorcontrib><creatorcontrib>Giorgetti, Ambra</creatorcontrib><creatorcontrib>Stoffel, Nicole U</creatorcontrib><creatorcontrib>Zimmermann, Michael B</creatorcontrib><creatorcontrib>Brittenham, Gary M</creatorcontrib><creatorcontrib>Geirnaert, Annelies</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rachmühl, Carole</au><au>Lacroix, Christophe</au><au>Giorgetti, Ambra</au><au>Stoffel, Nicole U</au><au>Zimmermann, Michael B</au><au>Brittenham, Gary M</au><au>Geirnaert, Annelies</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants</atitle><jtitle>BMC microbiology</jtitle><addtitle>BMC Microbiol</addtitle><date>2023-07-04</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>174</spage><epage>12</epage><pages>174-12</pages><artnum>174</artnum><issn>1471-2180</issn><eissn>1471-2180</eissn><abstract>The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal microbiota was validated. Fresh fecal samples were collected from 10 infants living in a rural area of Kenya. Samples were transported under protective conditions and subsequently prepared for inoculation within less than 30 h for batch cultivation. A diet-adapted cultivation medium was used that mimicked the daily intake of human milk and maize porridge in Kenyan infants during weaning. 16 S rRNA gene amplicon sequencing and HPLC analyses were performed to assess the composition and metabolic activity, respectively, of the fecal microbiota after 24 h of batch cultivation. High abundance of Bifidobacterium (53.4 ± 11.1%) and high proportions of acetate (56 ± 11% of total metabolites) and lactate (24 ± 22% of total metabolites) were detected in the Kenyan infant fecal microbiota. After cultivation started at an initial pH 7.6, the fraction of top bacterial genera (≥ 1% abundant) shared between fermentation and fecal samples was high at 97 ± 5%. However, Escherichia-Shigella, Clostridium sensu stricto 1, Bacteroides and Enterococcus were enriched concomitant with decreased Bifidobacterium abundance. Decreasing the initial pH to 6.9 lead to higher abundance of Bifidobacterium after incubation and increased the compositional similarity of fermentation and fecal samples. Despite similar total metabolite production of all fecal microbiota after cultivation, inter-individual differences in metabolite profiles were apparent. Protected transport and batch cultivation in host and diet adapted conditions allowed regrowth of the top abundant genera and reproduction of the metabolic activity of fresh Kenyan infant fecal microbiota. The validated batch cultivation protocol can be used to study the composition and functional potential of Kenyan infant fecal microbiota in vitro.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>37403024</pmid><doi>10.1186/s12866-023-02915-9</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2180
ispartof BMC microbiology, 2023-07, Vol.23 (1), p.174-12, Article 174
issn 1471-2180
1471-2180
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0a0dd93e6e56414eadc7f04ac7348cf8
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Abundance
Acetic acid
African infant
Babies
Bacteria
Bacteria - genetics
Bacteriology
Bifidobacterium
Breast milk
Breastfeeding & lactation
Composition
Cultivation
Cultures and culture media
Diet
Fecal microflora
Fecal sample preservation
Feces
Feces - microbiology
Fermentation
Gene sequencing
Health aspects
Humans
In vitro gut fermentation
Infant
Infants
Inoculation
Intestinal microflora
Kenya
Liquid chromatography
Metabolites
Methods
Microbiological research
Microbiota
Microorganisms
Milk
Milk, Human
Proteins
Regrowth
RNA, Ribosomal, 16S - analysis
RNA, Ribosomal, 16S - genetics
rRNA
Rural areas
Weaning
title Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20a%20batch%20cultivation%20protocol%20for%20fecal%20microbiota%20of%20Kenyan%20infants&rft.jtitle=BMC%20microbiology&rft.au=Rachm%C3%BChl,%20Carole&rft.date=2023-07-04&rft.volume=23&rft.issue=1&rft.spage=174&rft.epage=12&rft.pages=174-12&rft.artnum=174&rft.issn=1471-2180&rft.eissn=1471-2180&rft_id=info:doi/10.1186/s12866-023-02915-9&rft_dat=%3Cgale_doaj_%3EA755889188%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2838770846&rft_id=info:pmid/37403024&rft_galeid=A755889188&rfr_iscdi=true