Loading…
Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants
The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal m...
Saved in:
Published in: | BMC microbiology 2023-07, Vol.23 (1), p.174-12, Article 174 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203 |
---|---|
cites | cdi_FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 174 |
container_title | BMC microbiology |
container_volume | 23 |
creator | Rachmühl, Carole Lacroix, Christophe Giorgetti, Ambra Stoffel, Nicole U Zimmermann, Michael B Brittenham, Gary M Geirnaert, Annelies |
description | The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal microbiota was validated.
Fresh fecal samples were collected from 10 infants living in a rural area of Kenya. Samples were transported under protective conditions and subsequently prepared for inoculation within less than 30 h for batch cultivation. A diet-adapted cultivation medium was used that mimicked the daily intake of human milk and maize porridge in Kenyan infants during weaning. 16 S rRNA gene amplicon sequencing and HPLC analyses were performed to assess the composition and metabolic activity, respectively, of the fecal microbiota after 24 h of batch cultivation.
High abundance of Bifidobacterium (53.4 ± 11.1%) and high proportions of acetate (56 ± 11% of total metabolites) and lactate (24 ± 22% of total metabolites) were detected in the Kenyan infant fecal microbiota. After cultivation started at an initial pH 7.6, the fraction of top bacterial genera (≥ 1% abundant) shared between fermentation and fecal samples was high at 97 ± 5%. However, Escherichia-Shigella, Clostridium sensu stricto 1, Bacteroides and Enterococcus were enriched concomitant with decreased Bifidobacterium abundance. Decreasing the initial pH to 6.9 lead to higher abundance of Bifidobacterium after incubation and increased the compositional similarity of fermentation and fecal samples. Despite similar total metabolite production of all fecal microbiota after cultivation, inter-individual differences in metabolite profiles were apparent.
Protected transport and batch cultivation in host and diet adapted conditions allowed regrowth of the top abundant genera and reproduction of the metabolic activity of fresh Kenyan infant fecal microbiota. The validated batch cultivation protocol can be used to study the composition and functional potential of Kenyan infant fecal microbiota in vitro. |
doi_str_mv | 10.1186/s12866-023-02915-9 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a0dd93e6e56414eadc7f04ac7348cf8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A755889188</galeid><doaj_id>oai_doaj_org_article_0a0dd93e6e56414eadc7f04ac7348cf8</doaj_id><sourcerecordid>A755889188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203</originalsourceid><addsrcrecordid>eNptkktv1DAUhSMEoqXwB1igSGxgkWLHz6xQVVEYUQnx3Fo3zs3Uo0w8tZ2q_fc4TSkdhKzY0c05n53rUxQvKTmmVMt3kdZayorULD8NFVXzqDikXNGqppo8fvB-UDyLcUMIVZqpp8UBU5wwUvPD4usvGFwHyfmx9H0JZQvJXpR2GpK7Wsq74JO3fih7H8oeLQzl1tngW-cTzKbPON7AWLqxhzHF58WTHoaIL-7Wo-Ln2Ycfp5-q8y8fV6cn55UVjU4VJy1FolvaWpGhvSRS1aiFVYpTTluGDdNCCtXVyLjoMM8arFBStVzXhB0Vq4XbediYXXBbCDfGgzO3BR_WBkJydkBDgHRdw1CikBmO0FnVEw5WZabtdWa9X1i7qd1iZ3FMAYY96P6X0V2Ytb8ylDCqlZ5P8-aOEPzlhDGZrYsWhwFG9FM0tWZMctkImqWv_5Fu_BTG3KtZpZUimsu_qjXkP8i99XljO0PNiRJC64bq-eDH_1Hl0WG-Iz9i73J9z_B2z5A1Ca_TGqYYzer7t31tvWjzZccYsL9vCCVmTqBZEmhyAs1tAk2TTa8etvLe8idy7Ddxg9QQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838770846</pqid></control><display><type>article</type><title>Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Rachmühl, Carole ; Lacroix, Christophe ; Giorgetti, Ambra ; Stoffel, Nicole U ; Zimmermann, Michael B ; Brittenham, Gary M ; Geirnaert, Annelies</creator><creatorcontrib>Rachmühl, Carole ; Lacroix, Christophe ; Giorgetti, Ambra ; Stoffel, Nicole U ; Zimmermann, Michael B ; Brittenham, Gary M ; Geirnaert, Annelies</creatorcontrib><description>The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal microbiota was validated.
Fresh fecal samples were collected from 10 infants living in a rural area of Kenya. Samples were transported under protective conditions and subsequently prepared for inoculation within less than 30 h for batch cultivation. A diet-adapted cultivation medium was used that mimicked the daily intake of human milk and maize porridge in Kenyan infants during weaning. 16 S rRNA gene amplicon sequencing and HPLC analyses were performed to assess the composition and metabolic activity, respectively, of the fecal microbiota after 24 h of batch cultivation.
High abundance of Bifidobacterium (53.4 ± 11.1%) and high proportions of acetate (56 ± 11% of total metabolites) and lactate (24 ± 22% of total metabolites) were detected in the Kenyan infant fecal microbiota. After cultivation started at an initial pH 7.6, the fraction of top bacterial genera (≥ 1% abundant) shared between fermentation and fecal samples was high at 97 ± 5%. However, Escherichia-Shigella, Clostridium sensu stricto 1, Bacteroides and Enterococcus were enriched concomitant with decreased Bifidobacterium abundance. Decreasing the initial pH to 6.9 lead to higher abundance of Bifidobacterium after incubation and increased the compositional similarity of fermentation and fecal samples. Despite similar total metabolite production of all fecal microbiota after cultivation, inter-individual differences in metabolite profiles were apparent.
Protected transport and batch cultivation in host and diet adapted conditions allowed regrowth of the top abundant genera and reproduction of the metabolic activity of fresh Kenyan infant fecal microbiota. The validated batch cultivation protocol can be used to study the composition and functional potential of Kenyan infant fecal microbiota in vitro.</description><identifier>ISSN: 1471-2180</identifier><identifier>EISSN: 1471-2180</identifier><identifier>DOI: 10.1186/s12866-023-02915-9</identifier><identifier>PMID: 37403024</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Abundance ; Acetic acid ; African infant ; Babies ; Bacteria ; Bacteria - genetics ; Bacteriology ; Bifidobacterium ; Breast milk ; Breastfeeding & lactation ; Composition ; Cultivation ; Cultures and culture media ; Diet ; Fecal microflora ; Fecal sample preservation ; Feces ; Feces - microbiology ; Fermentation ; Gene sequencing ; Health aspects ; Humans ; In vitro gut fermentation ; Infant ; Infants ; Inoculation ; Intestinal microflora ; Kenya ; Liquid chromatography ; Metabolites ; Methods ; Microbiological research ; Microbiota ; Microorganisms ; Milk ; Milk, Human ; Proteins ; Regrowth ; RNA, Ribosomal, 16S - analysis ; RNA, Ribosomal, 16S - genetics ; rRNA ; Rural areas ; Weaning</subject><ispartof>BMC microbiology, 2023-07, Vol.23 (1), p.174-12, Article 174</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203</citedby><cites>FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318780/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2838770846?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37403024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rachmühl, Carole</creatorcontrib><creatorcontrib>Lacroix, Christophe</creatorcontrib><creatorcontrib>Giorgetti, Ambra</creatorcontrib><creatorcontrib>Stoffel, Nicole U</creatorcontrib><creatorcontrib>Zimmermann, Michael B</creatorcontrib><creatorcontrib>Brittenham, Gary M</creatorcontrib><creatorcontrib>Geirnaert, Annelies</creatorcontrib><title>Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants</title><title>BMC microbiology</title><addtitle>BMC Microbiol</addtitle><description>The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal microbiota was validated.
Fresh fecal samples were collected from 10 infants living in a rural area of Kenya. Samples were transported under protective conditions and subsequently prepared for inoculation within less than 30 h for batch cultivation. A diet-adapted cultivation medium was used that mimicked the daily intake of human milk and maize porridge in Kenyan infants during weaning. 16 S rRNA gene amplicon sequencing and HPLC analyses were performed to assess the composition and metabolic activity, respectively, of the fecal microbiota after 24 h of batch cultivation.
High abundance of Bifidobacterium (53.4 ± 11.1%) and high proportions of acetate (56 ± 11% of total metabolites) and lactate (24 ± 22% of total metabolites) were detected in the Kenyan infant fecal microbiota. After cultivation started at an initial pH 7.6, the fraction of top bacterial genera (≥ 1% abundant) shared between fermentation and fecal samples was high at 97 ± 5%. However, Escherichia-Shigella, Clostridium sensu stricto 1, Bacteroides and Enterococcus were enriched concomitant with decreased Bifidobacterium abundance. Decreasing the initial pH to 6.9 lead to higher abundance of Bifidobacterium after incubation and increased the compositional similarity of fermentation and fecal samples. Despite similar total metabolite production of all fecal microbiota after cultivation, inter-individual differences in metabolite profiles were apparent.
Protected transport and batch cultivation in host and diet adapted conditions allowed regrowth of the top abundant genera and reproduction of the metabolic activity of fresh Kenyan infant fecal microbiota. The validated batch cultivation protocol can be used to study the composition and functional potential of Kenyan infant fecal microbiota in vitro.</description><subject>Abundance</subject><subject>Acetic acid</subject><subject>African infant</subject><subject>Babies</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteriology</subject><subject>Bifidobacterium</subject><subject>Breast milk</subject><subject>Breastfeeding & lactation</subject><subject>Composition</subject><subject>Cultivation</subject><subject>Cultures and culture media</subject><subject>Diet</subject><subject>Fecal microflora</subject><subject>Fecal sample preservation</subject><subject>Feces</subject><subject>Feces - microbiology</subject><subject>Fermentation</subject><subject>Gene sequencing</subject><subject>Health aspects</subject><subject>Humans</subject><subject>In vitro gut fermentation</subject><subject>Infant</subject><subject>Infants</subject><subject>Inoculation</subject><subject>Intestinal microflora</subject><subject>Kenya</subject><subject>Liquid chromatography</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Microbiological research</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Milk</subject><subject>Milk, Human</subject><subject>Proteins</subject><subject>Regrowth</subject><subject>RNA, Ribosomal, 16S - analysis</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA</subject><subject>Rural areas</subject><subject>Weaning</subject><issn>1471-2180</issn><issn>1471-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAUhSMEoqXwB1igSGxgkWLHz6xQVVEYUQnx3Fo3zs3Uo0w8tZ2q_fc4TSkdhKzY0c05n53rUxQvKTmmVMt3kdZayorULD8NFVXzqDikXNGqppo8fvB-UDyLcUMIVZqpp8UBU5wwUvPD4usvGFwHyfmx9H0JZQvJXpR2GpK7Wsq74JO3fih7H8oeLQzl1tngW-cTzKbPON7AWLqxhzHF58WTHoaIL-7Wo-Ln2Ycfp5-q8y8fV6cn55UVjU4VJy1FolvaWpGhvSRS1aiFVYpTTluGDdNCCtXVyLjoMM8arFBStVzXhB0Vq4XbediYXXBbCDfGgzO3BR_WBkJydkBDgHRdw1CikBmO0FnVEw5WZabtdWa9X1i7qd1iZ3FMAYY96P6X0V2Ytb8ylDCqlZ5P8-aOEPzlhDGZrYsWhwFG9FM0tWZMctkImqWv_5Fu_BTG3KtZpZUimsu_qjXkP8i99XljO0PNiRJC64bq-eDH_1Hl0WG-Iz9i73J9z_B2z5A1Ca_TGqYYzer7t31tvWjzZccYsL9vCCVmTqBZEmhyAs1tAk2TTa8etvLe8idy7Ddxg9QQ</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>Rachmühl, Carole</creator><creator>Lacroix, Christophe</creator><creator>Giorgetti, Ambra</creator><creator>Stoffel, Nicole U</creator><creator>Zimmermann, Michael B</creator><creator>Brittenham, Gary M</creator><creator>Geirnaert, Annelies</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230704</creationdate><title>Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants</title><author>Rachmühl, Carole ; Lacroix, Christophe ; Giorgetti, Ambra ; Stoffel, Nicole U ; Zimmermann, Michael B ; Brittenham, Gary M ; Geirnaert, Annelies</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abundance</topic><topic>Acetic acid</topic><topic>African infant</topic><topic>Babies</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteriology</topic><topic>Bifidobacterium</topic><topic>Breast milk</topic><topic>Breastfeeding & lactation</topic><topic>Composition</topic><topic>Cultivation</topic><topic>Cultures and culture media</topic><topic>Diet</topic><topic>Fecal microflora</topic><topic>Fecal sample preservation</topic><topic>Feces</topic><topic>Feces - microbiology</topic><topic>Fermentation</topic><topic>Gene sequencing</topic><topic>Health aspects</topic><topic>Humans</topic><topic>In vitro gut fermentation</topic><topic>Infant</topic><topic>Infants</topic><topic>Inoculation</topic><topic>Intestinal microflora</topic><topic>Kenya</topic><topic>Liquid chromatography</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Microbiological research</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Milk</topic><topic>Milk, Human</topic><topic>Proteins</topic><topic>Regrowth</topic><topic>RNA, Ribosomal, 16S - analysis</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA</topic><topic>Rural areas</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rachmühl, Carole</creatorcontrib><creatorcontrib>Lacroix, Christophe</creatorcontrib><creatorcontrib>Giorgetti, Ambra</creatorcontrib><creatorcontrib>Stoffel, Nicole U</creatorcontrib><creatorcontrib>Zimmermann, Michael B</creatorcontrib><creatorcontrib>Brittenham, Gary M</creatorcontrib><creatorcontrib>Geirnaert, Annelies</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rachmühl, Carole</au><au>Lacroix, Christophe</au><au>Giorgetti, Ambra</au><au>Stoffel, Nicole U</au><au>Zimmermann, Michael B</au><au>Brittenham, Gary M</au><au>Geirnaert, Annelies</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants</atitle><jtitle>BMC microbiology</jtitle><addtitle>BMC Microbiol</addtitle><date>2023-07-04</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>174</spage><epage>12</epage><pages>174-12</pages><artnum>174</artnum><issn>1471-2180</issn><eissn>1471-2180</eissn><abstract>The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal microbiota was validated.
Fresh fecal samples were collected from 10 infants living in a rural area of Kenya. Samples were transported under protective conditions and subsequently prepared for inoculation within less than 30 h for batch cultivation. A diet-adapted cultivation medium was used that mimicked the daily intake of human milk and maize porridge in Kenyan infants during weaning. 16 S rRNA gene amplicon sequencing and HPLC analyses were performed to assess the composition and metabolic activity, respectively, of the fecal microbiota after 24 h of batch cultivation.
High abundance of Bifidobacterium (53.4 ± 11.1%) and high proportions of acetate (56 ± 11% of total metabolites) and lactate (24 ± 22% of total metabolites) were detected in the Kenyan infant fecal microbiota. After cultivation started at an initial pH 7.6, the fraction of top bacterial genera (≥ 1% abundant) shared between fermentation and fecal samples was high at 97 ± 5%. However, Escherichia-Shigella, Clostridium sensu stricto 1, Bacteroides and Enterococcus were enriched concomitant with decreased Bifidobacterium abundance. Decreasing the initial pH to 6.9 lead to higher abundance of Bifidobacterium after incubation and increased the compositional similarity of fermentation and fecal samples. Despite similar total metabolite production of all fecal microbiota after cultivation, inter-individual differences in metabolite profiles were apparent.
Protected transport and batch cultivation in host and diet adapted conditions allowed regrowth of the top abundant genera and reproduction of the metabolic activity of fresh Kenyan infant fecal microbiota. The validated batch cultivation protocol can be used to study the composition and functional potential of Kenyan infant fecal microbiota in vitro.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>37403024</pmid><doi>10.1186/s12866-023-02915-9</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2180 |
ispartof | BMC microbiology, 2023-07, Vol.23 (1), p.174-12, Article 174 |
issn | 1471-2180 1471-2180 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0a0dd93e6e56414eadc7f04ac7348cf8 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Abundance Acetic acid African infant Babies Bacteria Bacteria - genetics Bacteriology Bifidobacterium Breast milk Breastfeeding & lactation Composition Cultivation Cultures and culture media Diet Fecal microflora Fecal sample preservation Feces Feces - microbiology Fermentation Gene sequencing Health aspects Humans In vitro gut fermentation Infant Infants Inoculation Intestinal microflora Kenya Liquid chromatography Metabolites Methods Microbiological research Microbiota Microorganisms Milk Milk, Human Proteins Regrowth RNA, Ribosomal, 16S - analysis RNA, Ribosomal, 16S - genetics rRNA Rural areas Weaning |
title | Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20a%20batch%20cultivation%20protocol%20for%20fecal%20microbiota%20of%20Kenyan%20infants&rft.jtitle=BMC%20microbiology&rft.au=Rachm%C3%BChl,%20Carole&rft.date=2023-07-04&rft.volume=23&rft.issue=1&rft.spage=174&rft.epage=12&rft.pages=174-12&rft.artnum=174&rft.issn=1471-2180&rft.eissn=1471-2180&rft_id=info:doi/10.1186/s12866-023-02915-9&rft_dat=%3Cgale_doaj_%3EA755889188%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c598t-40b1e08b1bc5fecf60672e85c774141b3e9385657d2e345dee348ac5767b48203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2838770846&rft_id=info:pmid/37403024&rft_galeid=A755889188&rfr_iscdi=true |