Loading…

Excitonic Bloch–Siegert shift in CsPbI3 perovskite quantum dots

Coherent interaction between matter and light field induces both optical Stark effect and Bloch–Siegert shift. Observing the latter has been historically challenging, because it is weak and is often accompanied by a much stronger Stark shift. Herein, by controlling the light helicity, we can largely...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-09, Vol.13 (1), p.5559-5559, Article 5559
Main Authors: Li, Yuxuan, Han, Yaoyao, Liang, Wenfei, Zhang, Boyu, Li, Yulu, Liu, Yuan, Yang, Yupeng, Wu, Kaifeng, Zhu, Jingyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coherent interaction between matter and light field induces both optical Stark effect and Bloch–Siegert shift. Observing the latter has been historically challenging, because it is weak and is often accompanied by a much stronger Stark shift. Herein, by controlling the light helicity, we can largely restrict these two effects to different spin-transitions in CsPbI 3 perovskite quantum dots, achieving room-temperature Bloch–Siegert shift as strong as 4 meV with near-infrared pulses. The ratio between the Bloch–Siegert and optical Stark shifts is however systematically higher than the prediction by the non-interacting, quasi-particle model. With a model that explicitly accounts for excitonic effects, we quantitatively reproduce the experimental observations. This model depicts a unified physical picture of the optical Stark effect, biexcitonic optical Stark effect and Bloch–Siegert shift in low-dimensional materials displaying strong many-body interactions, forming the basis for the implementation of these effects to information processing, optical modulation and Floquet engineering. Observation of a Bloch-Siegert shift has remained elusive. Here, Wu et al, reports spin-selective Bloch-Siegert shift in lead halide perovskite quantum dots, and highlights the importance of many-body interactions in correctly modeling the shift.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-33314-9