Loading…

Ecological Network Inference From Long-Term Presence-Absence Data

Ecological communities are characterized by complex networks of trophic and nontrophic interactions, which shape the dy-namics of the community. Machine learning and correlational methods are increasingly popular for inferring networks from co-occurrence and time series data, particularly in microbi...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-08, Vol.7 (1), p.7154-12, Article 7154
Main Authors: Sander, Elizabeth L., Wootton, J. Timothy, Allesina, Stefano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3
cites cdi_FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3
container_end_page 12
container_issue 1
container_start_page 7154
container_title Scientific reports
container_volume 7
creator Sander, Elizabeth L.
Wootton, J. Timothy
Allesina, Stefano
description Ecological communities are characterized by complex networks of trophic and nontrophic interactions, which shape the dy-namics of the community. Machine learning and correlational methods are increasingly popular for inferring networks from co-occurrence and time series data, particularly in microbial systems. In this study, we test the suitability of these methods for inferring ecological interactions by constructing networks using Dynamic Bayesian Networks, Lasso regression, and Pear-son’s correlation coefficient, then comparing the model networks to empirical trophic and nontrophic webs in two ecological systems. We find that although each model significantly replicates the structure of at least one empirical network, no model significantly predicts network structure in both systems, and no model is clearly superior to the others. We also find that networks inferred for the Tatoosh intertidal match the nontrophic network much more closely than the trophic one, possibly due to the challenges of identifying trophic interactions from presence-absence data. Our findings suggest that although these methods hold some promise for ecological network inference, presence-absence data does not provide enough signal for models to consistently identify interactions, and networks inferred from these data should be interpreted with caution.
doi_str_mv 10.1038/s41598-017-07009-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a1c1fafb39a47679b06e032395d6927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0a1c1fafb39a47679b06e032395d6927</doaj_id><sourcerecordid>1925897271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3</originalsourceid><addsrcrecordid>eNp1kUtv1DAURiMEolXpH2CBIrFh4-K34w3SqC9GGgGLsrZs5zpkSOJiZ6D8e9xJqaZIeGPL99zjx1dVrwk-I5g17zMnQjcIE4Wwwliju2fVMcVcIMoofX6wPqpOc97iMgTVnOiX1RFtlNRY6eNqdenjELve26H-BPOvmL7X6ylAgslDfZXiWG_i1KEbSGP9JUG-30crt5_rCzvbV9WLYIcMpw_zSfX16vLm_CPafL5en682yAuOZ8ScJE4HqSHwhjQOK0YtdxZUUK2kTinA0pHQWsapZG1LdHC-lQ1lslHEspNqvXjbaLfmNvWjTb9NtL3Zb8TUGZvm3g9gsCWeBBsc05YrqbTDEjCjTItWaqqK68Piut25EVoP05zs8ET6tDL130wXfxohOMFYFsG7B0GKP3aQZzP22cMw2AniLhuiqWi0oooU9O0_6Dbu0lS-qlBCEaq05oWiC-VTzDlBeLwMweY-cLMEbkrgZh-4uStNbw6f8djyN94CsAXIpTR1kA7O_r_2DxpPtUk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957127994</pqid></control><display><type>article</type><title>Ecological Network Inference From Long-Term Presence-Absence Data</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Sander, Elizabeth L. ; Wootton, J. Timothy ; Allesina, Stefano</creator><creatorcontrib>Sander, Elizabeth L. ; Wootton, J. Timothy ; Allesina, Stefano</creatorcontrib><description>Ecological communities are characterized by complex networks of trophic and nontrophic interactions, which shape the dy-namics of the community. Machine learning and correlational methods are increasingly popular for inferring networks from co-occurrence and time series data, particularly in microbial systems. In this study, we test the suitability of these methods for inferring ecological interactions by constructing networks using Dynamic Bayesian Networks, Lasso regression, and Pear-son’s correlation coefficient, then comparing the model networks to empirical trophic and nontrophic webs in two ecological systems. We find that although each model significantly replicates the structure of at least one empirical network, no model significantly predicts network structure in both systems, and no model is clearly superior to the others. We also find that networks inferred for the Tatoosh intertidal match the nontrophic network much more closely than the trophic one, possibly due to the challenges of identifying trophic interactions from presence-absence data. Our findings suggest that although these methods hold some promise for ecological network inference, presence-absence data does not provide enough signal for models to consistently identify interactions, and networks inferred from these data should be interpreted with caution.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-07009-x</identifier><identifier>PMID: 28769079</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/2463 ; 631/158/853/2006 ; Bayesian analysis ; Correlation coefficient ; Datasets ; Ecology ; Endangered &amp; extinct species ; Humanities and Social Sciences ; Learning algorithms ; Machine learning ; Mathematical models ; Methods ; multidisciplinary ; Population ; Science ; Science (multidisciplinary) ; Time series ; Trophic relationships</subject><ispartof>Scientific reports, 2017-08, Vol.7 (1), p.7154-12, Article 7154</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3</citedby><cites>FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3</cites><orcidid>0000-0003-0313-8374 ; 0000-0002-2086-6931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957127994/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957127994?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28769079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sander, Elizabeth L.</creatorcontrib><creatorcontrib>Wootton, J. Timothy</creatorcontrib><creatorcontrib>Allesina, Stefano</creatorcontrib><title>Ecological Network Inference From Long-Term Presence-Absence Data</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Ecological communities are characterized by complex networks of trophic and nontrophic interactions, which shape the dy-namics of the community. Machine learning and correlational methods are increasingly popular for inferring networks from co-occurrence and time series data, particularly in microbial systems. In this study, we test the suitability of these methods for inferring ecological interactions by constructing networks using Dynamic Bayesian Networks, Lasso regression, and Pear-son’s correlation coefficient, then comparing the model networks to empirical trophic and nontrophic webs in two ecological systems. We find that although each model significantly replicates the structure of at least one empirical network, no model significantly predicts network structure in both systems, and no model is clearly superior to the others. We also find that networks inferred for the Tatoosh intertidal match the nontrophic network much more closely than the trophic one, possibly due to the challenges of identifying trophic interactions from presence-absence data. Our findings suggest that although these methods hold some promise for ecological network inference, presence-absence data does not provide enough signal for models to consistently identify interactions, and networks inferred from these data should be interpreted with caution.</description><subject>631/158/2463</subject><subject>631/158/853/2006</subject><subject>Bayesian analysis</subject><subject>Correlation coefficient</subject><subject>Datasets</subject><subject>Ecology</subject><subject>Endangered &amp; extinct species</subject><subject>Humanities and Social Sciences</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Population</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Time series</subject><subject>Trophic relationships</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUtv1DAURiMEolXpH2CBIrFh4-K34w3SqC9GGgGLsrZs5zpkSOJiZ6D8e9xJqaZIeGPL99zjx1dVrwk-I5g17zMnQjcIE4Wwwliju2fVMcVcIMoofX6wPqpOc97iMgTVnOiX1RFtlNRY6eNqdenjELve26H-BPOvmL7X6ylAgslDfZXiWG_i1KEbSGP9JUG-30crt5_rCzvbV9WLYIcMpw_zSfX16vLm_CPafL5en682yAuOZ8ScJE4HqSHwhjQOK0YtdxZUUK2kTinA0pHQWsapZG1LdHC-lQ1lslHEspNqvXjbaLfmNvWjTb9NtL3Zb8TUGZvm3g9gsCWeBBsc05YrqbTDEjCjTItWaqqK68Piut25EVoP05zs8ET6tDL130wXfxohOMFYFsG7B0GKP3aQZzP22cMw2AniLhuiqWi0oooU9O0_6Dbu0lS-qlBCEaq05oWiC-VTzDlBeLwMweY-cLMEbkrgZh-4uStNbw6f8djyN94CsAXIpTR1kA7O_r_2DxpPtUk</recordid><startdate>20170802</startdate><enddate>20170802</enddate><creator>Sander, Elizabeth L.</creator><creator>Wootton, J. Timothy</creator><creator>Allesina, Stefano</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0313-8374</orcidid><orcidid>https://orcid.org/0000-0002-2086-6931</orcidid></search><sort><creationdate>20170802</creationdate><title>Ecological Network Inference From Long-Term Presence-Absence Data</title><author>Sander, Elizabeth L. ; Wootton, J. Timothy ; Allesina, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/158/2463</topic><topic>631/158/853/2006</topic><topic>Bayesian analysis</topic><topic>Correlation coefficient</topic><topic>Datasets</topic><topic>Ecology</topic><topic>Endangered &amp; extinct species</topic><topic>Humanities and Social Sciences</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Population</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Time series</topic><topic>Trophic relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sander, Elizabeth L.</creatorcontrib><creatorcontrib>Wootton, J. Timothy</creatorcontrib><creatorcontrib>Allesina, Stefano</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sander, Elizabeth L.</au><au>Wootton, J. Timothy</au><au>Allesina, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological Network Inference From Long-Term Presence-Absence Data</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-08-02</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>7154</spage><epage>12</epage><pages>7154-12</pages><artnum>7154</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Ecological communities are characterized by complex networks of trophic and nontrophic interactions, which shape the dy-namics of the community. Machine learning and correlational methods are increasingly popular for inferring networks from co-occurrence and time series data, particularly in microbial systems. In this study, we test the suitability of these methods for inferring ecological interactions by constructing networks using Dynamic Bayesian Networks, Lasso regression, and Pear-son’s correlation coefficient, then comparing the model networks to empirical trophic and nontrophic webs in two ecological systems. We find that although each model significantly replicates the structure of at least one empirical network, no model significantly predicts network structure in both systems, and no model is clearly superior to the others. We also find that networks inferred for the Tatoosh intertidal match the nontrophic network much more closely than the trophic one, possibly due to the challenges of identifying trophic interactions from presence-absence data. Our findings suggest that although these methods hold some promise for ecological network inference, presence-absence data does not provide enough signal for models to consistently identify interactions, and networks inferred from these data should be interpreted with caution.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28769079</pmid><doi>10.1038/s41598-017-07009-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0313-8374</orcidid><orcidid>https://orcid.org/0000-0002-2086-6931</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-08, Vol.7 (1), p.7154-12, Article 7154
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0a1c1fafb39a47679b06e032395d6927
source Open Access: PubMed Central; Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access
subjects 631/158/2463
631/158/853/2006
Bayesian analysis
Correlation coefficient
Datasets
Ecology
Endangered & extinct species
Humanities and Social Sciences
Learning algorithms
Machine learning
Mathematical models
Methods
multidisciplinary
Population
Science
Science (multidisciplinary)
Time series
Trophic relationships
title Ecological Network Inference From Long-Term Presence-Absence Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20Network%20Inference%20From%20Long-Term%20Presence-Absence%20Data&rft.jtitle=Scientific%20reports&rft.au=Sander,%20Elizabeth%20L.&rft.date=2017-08-02&rft.volume=7&rft.issue=1&rft.spage=7154&rft.epage=12&rft.pages=7154-12&rft.artnum=7154&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-07009-x&rft_dat=%3Cproquest_doaj_%3E1925897271%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957127994&rft_id=info:pmid/28769079&rfr_iscdi=true