Loading…
Ecological Network Inference From Long-Term Presence-Absence Data
Ecological communities are characterized by complex networks of trophic and nontrophic interactions, which shape the dy-namics of the community. Machine learning and correlational methods are increasingly popular for inferring networks from co-occurrence and time series data, particularly in microbi...
Saved in:
Published in: | Scientific reports 2017-08, Vol.7 (1), p.7154-12, Article 7154 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 7154 |
container_title | Scientific reports |
container_volume | 7 |
creator | Sander, Elizabeth L. Wootton, J. Timothy Allesina, Stefano |
description | Ecological communities are characterized by complex networks of trophic and nontrophic interactions, which shape the dy-namics of the community. Machine learning and correlational methods are increasingly popular for inferring networks from co-occurrence and time series data, particularly in microbial systems. In this study, we test the suitability of these methods for inferring ecological interactions by constructing networks using Dynamic Bayesian Networks, Lasso regression, and Pear-son’s correlation coefficient, then comparing the model networks to empirical trophic and nontrophic webs in two ecological systems. We find that although each model significantly replicates the structure of at least one empirical network, no model significantly predicts network structure in both systems, and no model is clearly superior to the others. We also find that networks inferred for the Tatoosh intertidal match the nontrophic network much more closely than the trophic one, possibly due to the challenges of identifying trophic interactions from presence-absence data. Our findings suggest that although these methods hold some promise for ecological network inference, presence-absence data does not provide enough signal for models to consistently identify interactions, and networks inferred from these data should be interpreted with caution. |
doi_str_mv | 10.1038/s41598-017-07009-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a1c1fafb39a47679b06e032395d6927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0a1c1fafb39a47679b06e032395d6927</doaj_id><sourcerecordid>1925897271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3</originalsourceid><addsrcrecordid>eNp1kUtv1DAURiMEolXpH2CBIrFh4-K34w3SqC9GGgGLsrZs5zpkSOJiZ6D8e9xJqaZIeGPL99zjx1dVrwk-I5g17zMnQjcIE4Wwwliju2fVMcVcIMoofX6wPqpOc97iMgTVnOiX1RFtlNRY6eNqdenjELve26H-BPOvmL7X6ylAgslDfZXiWG_i1KEbSGP9JUG-30crt5_rCzvbV9WLYIcMpw_zSfX16vLm_CPafL5en682yAuOZ8ScJE4HqSHwhjQOK0YtdxZUUK2kTinA0pHQWsapZG1LdHC-lQ1lslHEspNqvXjbaLfmNvWjTb9NtL3Zb8TUGZvm3g9gsCWeBBsc05YrqbTDEjCjTItWaqqK68Piut25EVoP05zs8ET6tDL130wXfxohOMFYFsG7B0GKP3aQZzP22cMw2AniLhuiqWi0oooU9O0_6Dbu0lS-qlBCEaq05oWiC-VTzDlBeLwMweY-cLMEbkrgZh-4uStNbw6f8djyN94CsAXIpTR1kA7O_r_2DxpPtUk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957127994</pqid></control><display><type>article</type><title>Ecological Network Inference From Long-Term Presence-Absence Data</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Sander, Elizabeth L. ; Wootton, J. Timothy ; Allesina, Stefano</creator><creatorcontrib>Sander, Elizabeth L. ; Wootton, J. Timothy ; Allesina, Stefano</creatorcontrib><description>Ecological communities are characterized by complex networks of trophic and nontrophic interactions, which shape the dy-namics of the community. Machine learning and correlational methods are increasingly popular for inferring networks from co-occurrence and time series data, particularly in microbial systems. In this study, we test the suitability of these methods for inferring ecological interactions by constructing networks using Dynamic Bayesian Networks, Lasso regression, and Pear-son’s correlation coefficient, then comparing the model networks to empirical trophic and nontrophic webs in two ecological systems. We find that although each model significantly replicates the structure of at least one empirical network, no model significantly predicts network structure in both systems, and no model is clearly superior to the others. We also find that networks inferred for the Tatoosh intertidal match the nontrophic network much more closely than the trophic one, possibly due to the challenges of identifying trophic interactions from presence-absence data. Our findings suggest that although these methods hold some promise for ecological network inference, presence-absence data does not provide enough signal for models to consistently identify interactions, and networks inferred from these data should be interpreted with caution.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-07009-x</identifier><identifier>PMID: 28769079</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/2463 ; 631/158/853/2006 ; Bayesian analysis ; Correlation coefficient ; Datasets ; Ecology ; Endangered & extinct species ; Humanities and Social Sciences ; Learning algorithms ; Machine learning ; Mathematical models ; Methods ; multidisciplinary ; Population ; Science ; Science (multidisciplinary) ; Time series ; Trophic relationships</subject><ispartof>Scientific reports, 2017-08, Vol.7 (1), p.7154-12, Article 7154</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3</citedby><cites>FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3</cites><orcidid>0000-0003-0313-8374 ; 0000-0002-2086-6931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957127994/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957127994?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28769079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sander, Elizabeth L.</creatorcontrib><creatorcontrib>Wootton, J. Timothy</creatorcontrib><creatorcontrib>Allesina, Stefano</creatorcontrib><title>Ecological Network Inference From Long-Term Presence-Absence Data</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Ecological communities are characterized by complex networks of trophic and nontrophic interactions, which shape the dy-namics of the community. Machine learning and correlational methods are increasingly popular for inferring networks from co-occurrence and time series data, particularly in microbial systems. In this study, we test the suitability of these methods for inferring ecological interactions by constructing networks using Dynamic Bayesian Networks, Lasso regression, and Pear-son’s correlation coefficient, then comparing the model networks to empirical trophic and nontrophic webs in two ecological systems. We find that although each model significantly replicates the structure of at least one empirical network, no model significantly predicts network structure in both systems, and no model is clearly superior to the others. We also find that networks inferred for the Tatoosh intertidal match the nontrophic network much more closely than the trophic one, possibly due to the challenges of identifying trophic interactions from presence-absence data. Our findings suggest that although these methods hold some promise for ecological network inference, presence-absence data does not provide enough signal for models to consistently identify interactions, and networks inferred from these data should be interpreted with caution.</description><subject>631/158/2463</subject><subject>631/158/853/2006</subject><subject>Bayesian analysis</subject><subject>Correlation coefficient</subject><subject>Datasets</subject><subject>Ecology</subject><subject>Endangered & extinct species</subject><subject>Humanities and Social Sciences</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Population</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Time series</subject><subject>Trophic relationships</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUtv1DAURiMEolXpH2CBIrFh4-K34w3SqC9GGgGLsrZs5zpkSOJiZ6D8e9xJqaZIeGPL99zjx1dVrwk-I5g17zMnQjcIE4Wwwliju2fVMcVcIMoofX6wPqpOc97iMgTVnOiX1RFtlNRY6eNqdenjELve26H-BPOvmL7X6ylAgslDfZXiWG_i1KEbSGP9JUG-30crt5_rCzvbV9WLYIcMpw_zSfX16vLm_CPafL5en682yAuOZ8ScJE4HqSHwhjQOK0YtdxZUUK2kTinA0pHQWsapZG1LdHC-lQ1lslHEspNqvXjbaLfmNvWjTb9NtL3Zb8TUGZvm3g9gsCWeBBsc05YrqbTDEjCjTItWaqqK68Piut25EVoP05zs8ET6tDL130wXfxohOMFYFsG7B0GKP3aQZzP22cMw2AniLhuiqWi0oooU9O0_6Dbu0lS-qlBCEaq05oWiC-VTzDlBeLwMweY-cLMEbkrgZh-4uStNbw6f8djyN94CsAXIpTR1kA7O_r_2DxpPtUk</recordid><startdate>20170802</startdate><enddate>20170802</enddate><creator>Sander, Elizabeth L.</creator><creator>Wootton, J. Timothy</creator><creator>Allesina, Stefano</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0313-8374</orcidid><orcidid>https://orcid.org/0000-0002-2086-6931</orcidid></search><sort><creationdate>20170802</creationdate><title>Ecological Network Inference From Long-Term Presence-Absence Data</title><author>Sander, Elizabeth L. ; Wootton, J. Timothy ; Allesina, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/158/2463</topic><topic>631/158/853/2006</topic><topic>Bayesian analysis</topic><topic>Correlation coefficient</topic><topic>Datasets</topic><topic>Ecology</topic><topic>Endangered & extinct species</topic><topic>Humanities and Social Sciences</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Population</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Time series</topic><topic>Trophic relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sander, Elizabeth L.</creatorcontrib><creatorcontrib>Wootton, J. Timothy</creatorcontrib><creatorcontrib>Allesina, Stefano</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sander, Elizabeth L.</au><au>Wootton, J. Timothy</au><au>Allesina, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological Network Inference From Long-Term Presence-Absence Data</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-08-02</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>7154</spage><epage>12</epage><pages>7154-12</pages><artnum>7154</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Ecological communities are characterized by complex networks of trophic and nontrophic interactions, which shape the dy-namics of the community. Machine learning and correlational methods are increasingly popular for inferring networks from co-occurrence and time series data, particularly in microbial systems. In this study, we test the suitability of these methods for inferring ecological interactions by constructing networks using Dynamic Bayesian Networks, Lasso regression, and Pear-son’s correlation coefficient, then comparing the model networks to empirical trophic and nontrophic webs in two ecological systems. We find that although each model significantly replicates the structure of at least one empirical network, no model significantly predicts network structure in both systems, and no model is clearly superior to the others. We also find that networks inferred for the Tatoosh intertidal match the nontrophic network much more closely than the trophic one, possibly due to the challenges of identifying trophic interactions from presence-absence data. Our findings suggest that although these methods hold some promise for ecological network inference, presence-absence data does not provide enough signal for models to consistently identify interactions, and networks inferred from these data should be interpreted with caution.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28769079</pmid><doi>10.1038/s41598-017-07009-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0313-8374</orcidid><orcidid>https://orcid.org/0000-0002-2086-6931</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-08, Vol.7 (1), p.7154-12, Article 7154 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0a1c1fafb39a47679b06e032395d6927 |
source | Open Access: PubMed Central; Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/158/2463 631/158/853/2006 Bayesian analysis Correlation coefficient Datasets Ecology Endangered & extinct species Humanities and Social Sciences Learning algorithms Machine learning Mathematical models Methods multidisciplinary Population Science Science (multidisciplinary) Time series Trophic relationships |
title | Ecological Network Inference From Long-Term Presence-Absence Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20Network%20Inference%20From%20Long-Term%20Presence-Absence%20Data&rft.jtitle=Scientific%20reports&rft.au=Sander,%20Elizabeth%20L.&rft.date=2017-08-02&rft.volume=7&rft.issue=1&rft.spage=7154&rft.epage=12&rft.pages=7154-12&rft.artnum=7154&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-07009-x&rft_dat=%3Cproquest_doaj_%3E1925897271%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-3b61b9f69ef4818b0732a4bae7f7d62b77e06b1fda34263dd19fbcd68236871a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957127994&rft_id=info:pmid/28769079&rfr_iscdi=true |