Loading…
Designing interstitial boron‐doped tunnel‐type vanadium dioxide cathode for enhancing zinc ion storage capability
Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials. Here, an interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Various analysis techniques demonstrate that boron resides in the interstitial sit...
Saved in:
Published in: | Carbon energy 2023-08, Vol.5 (8), p.n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203 |
---|---|
cites | cdi_FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203 |
container_end_page | n/a |
container_issue | 8 |
container_start_page | |
container_title | Carbon energy |
container_volume | 5 |
creator | Wang, Shiwen Zhang, Hang Zhao, Kang Liu, Wenqing Luo, Nairui Zhao, Jianan Wu, Shide Ding, Junwei Fang, Shaoming Cheng, Fangyi |
description | Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials. Here, an interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Various analysis techniques demonstrate that boron resides in the interstitial site of VO2(B) and such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, we found that the boron doping level has a saturation limit peculiarity as proved by the quantitative analysis. Notably, the 2 at.% boron‐doped VO2(B) shows enhanced zinc ion storage performance with a high storage capacity of 281.7 mAh g−1 at 0.1 A g−1, excellent rate performance of 142.2 mAh g−1 at 20 A g−1, and long cycle stability up to 1000 cycles with the capacity retention of 133.3 mAh g−1 at 5 A g−1. Additionally, the successful preparation of the boron‐doped tunnel‐type α‐MnO2 further indicates that the interstitial boron doping approach is a general strategy, which supplies a new chance to design other types of functional electrode materials for multivalence batteries.
An interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, the saturation limit peculiarity of the boron doping level has been determined by the quantitative analysis. |
doi_str_mv | 10.1002/cey2.330 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a1f3ea218f248ff9a5a302119e43302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0a1f3ea218f248ff9a5a302119e43302</doaj_id><sourcerecordid>2857745287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203</originalsourceid><addsrcrecordid>eNp1kctu1TAQQCMEElVbiU-wxIZNih-5sb1El9JWqtRNWbCyJn7c-iq1g-20pCs-od_Il9ThIsSG1Tx0dGY00zTvCD4jGNOP2i70jDH8qjmiPeOtZL14_U_-tjnNeY8rSjjBVB4182eb_S74sEM-FJty8cXDiIaYYvj189nEyRpU5hDsWMuyTBY9QADj53tkfPzhjUUayl2s0cWEbLiDoFffkw8a-RhQLjHBbsUmGPzoy3LSvHEwZnv6Jx43X7-c324v2-ubi6vtp-tWM8lwO2jOnSVSg5E97cEZIjuAwXSDE9JS4QCbvtfQM-wwYO6w4AM2Rhg3AMXsuLk6eE2EvZqSv4e0qAhe_W7EtFOQitejVRiIYxYoEY52wjkJG2D1TkTarl6UVtf7g2tK8ftsc1H7OKdQ11dUbDjvNlTwSn04UDrFnJN1f6cSrNYfqfVHqhor2h7QRz_a5b-c2p5_oyv_Atqclrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857745287</pqid></control><display><type>article</type><title>Designing interstitial boron‐doped tunnel‐type vanadium dioxide cathode for enhancing zinc ion storage capability</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Wang, Shiwen ; Zhang, Hang ; Zhao, Kang ; Liu, Wenqing ; Luo, Nairui ; Zhao, Jianan ; Wu, Shide ; Ding, Junwei ; Fang, Shaoming ; Cheng, Fangyi</creator><creatorcontrib>Wang, Shiwen ; Zhang, Hang ; Zhao, Kang ; Liu, Wenqing ; Luo, Nairui ; Zhao, Jianan ; Wu, Shide ; Ding, Junwei ; Fang, Shaoming ; Cheng, Fangyi</creatorcontrib><description>Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials. Here, an interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Various analysis techniques demonstrate that boron resides in the interstitial site of VO2(B) and such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, we found that the boron doping level has a saturation limit peculiarity as proved by the quantitative analysis. Notably, the 2 at.% boron‐doped VO2(B) shows enhanced zinc ion storage performance with a high storage capacity of 281.7 mAh g−1 at 0.1 A g−1, excellent rate performance of 142.2 mAh g−1 at 20 A g−1, and long cycle stability up to 1000 cycles with the capacity retention of 133.3 mAh g−1 at 5 A g−1. Additionally, the successful preparation of the boron‐doped tunnel‐type α‐MnO2 further indicates that the interstitial boron doping approach is a general strategy, which supplies a new chance to design other types of functional electrode materials for multivalence batteries.
An interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, the saturation limit peculiarity of the boron doping level has been determined by the quantitative analysis.</description><identifier>ISSN: 2637-9368</identifier><identifier>EISSN: 2637-9368</identifier><identifier>DOI: 10.1002/cey2.330</identifier><language>eng</language><publisher>Beijing: John Wiley & Sons, Inc</publisher><subject>Boron ; cathode ; Cathodes ; Crystal structure ; Doping ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrodes ; interstitial boron doping ; Ion storage ; Manganese dioxide ; Spectrum analysis ; Storage capacity ; Structural stability ; Titanium ; Tunnel construction ; tunnel‐type VO2(B) ; Vanadium ; Vanadium dioxide ; Vanadium oxides ; Zinc ; zinc ion battery</subject><ispartof>Carbon energy, 2023-08, Vol.5 (8), p.n/a</ispartof><rights>2023 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203</citedby><cites>FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203</cites><orcidid>0000-0001-7661-2554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857745287/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857745287?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11561,25752,27923,27924,37011,44589,46051,46475,74897</link.rule.ids></links><search><creatorcontrib>Wang, Shiwen</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Zhao, Kang</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Luo, Nairui</creatorcontrib><creatorcontrib>Zhao, Jianan</creatorcontrib><creatorcontrib>Wu, Shide</creatorcontrib><creatorcontrib>Ding, Junwei</creatorcontrib><creatorcontrib>Fang, Shaoming</creatorcontrib><creatorcontrib>Cheng, Fangyi</creatorcontrib><title>Designing interstitial boron‐doped tunnel‐type vanadium dioxide cathode for enhancing zinc ion storage capability</title><title>Carbon energy</title><description>Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials. Here, an interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Various analysis techniques demonstrate that boron resides in the interstitial site of VO2(B) and such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, we found that the boron doping level has a saturation limit peculiarity as proved by the quantitative analysis. Notably, the 2 at.% boron‐doped VO2(B) shows enhanced zinc ion storage performance with a high storage capacity of 281.7 mAh g−1 at 0.1 A g−1, excellent rate performance of 142.2 mAh g−1 at 20 A g−1, and long cycle stability up to 1000 cycles with the capacity retention of 133.3 mAh g−1 at 5 A g−1. Additionally, the successful preparation of the boron‐doped tunnel‐type α‐MnO2 further indicates that the interstitial boron doping approach is a general strategy, which supplies a new chance to design other types of functional electrode materials for multivalence batteries.
An interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, the saturation limit peculiarity of the boron doping level has been determined by the quantitative analysis.</description><subject>Boron</subject><subject>cathode</subject><subject>Cathodes</subject><subject>Crystal structure</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>interstitial boron doping</subject><subject>Ion storage</subject><subject>Manganese dioxide</subject><subject>Spectrum analysis</subject><subject>Storage capacity</subject><subject>Structural stability</subject><subject>Titanium</subject><subject>Tunnel construction</subject><subject>tunnel‐type VO2(B)</subject><subject>Vanadium</subject><subject>Vanadium dioxide</subject><subject>Vanadium oxides</subject><subject>Zinc</subject><subject>zinc ion battery</subject><issn>2637-9368</issn><issn>2637-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kctu1TAQQCMEElVbiU-wxIZNih-5sb1El9JWqtRNWbCyJn7c-iq1g-20pCs-od_Il9ThIsSG1Tx0dGY00zTvCD4jGNOP2i70jDH8qjmiPeOtZL14_U_-tjnNeY8rSjjBVB4182eb_S74sEM-FJty8cXDiIaYYvj189nEyRpU5hDsWMuyTBY9QADj53tkfPzhjUUayl2s0cWEbLiDoFffkw8a-RhQLjHBbsUmGPzoy3LSvHEwZnv6Jx43X7-c324v2-ubi6vtp-tWM8lwO2jOnSVSg5E97cEZIjuAwXSDE9JS4QCbvtfQM-wwYO6w4AM2Rhg3AMXsuLk6eE2EvZqSv4e0qAhe_W7EtFOQitejVRiIYxYoEY52wjkJG2D1TkTarl6UVtf7g2tK8ftsc1H7OKdQ11dUbDjvNlTwSn04UDrFnJN1f6cSrNYfqfVHqhor2h7QRz_a5b-c2p5_oyv_Atqclrw</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Wang, Shiwen</creator><creator>Zhang, Hang</creator><creator>Zhao, Kang</creator><creator>Liu, Wenqing</creator><creator>Luo, Nairui</creator><creator>Zhao, Jianan</creator><creator>Wu, Shide</creator><creator>Ding, Junwei</creator><creator>Fang, Shaoming</creator><creator>Cheng, Fangyi</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7661-2554</orcidid></search><sort><creationdate>202308</creationdate><title>Designing interstitial boron‐doped tunnel‐type vanadium dioxide cathode for enhancing zinc ion storage capability</title><author>Wang, Shiwen ; Zhang, Hang ; Zhao, Kang ; Liu, Wenqing ; Luo, Nairui ; Zhao, Jianan ; Wu, Shide ; Ding, Junwei ; Fang, Shaoming ; Cheng, Fangyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boron</topic><topic>cathode</topic><topic>Cathodes</topic><topic>Crystal structure</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>interstitial boron doping</topic><topic>Ion storage</topic><topic>Manganese dioxide</topic><topic>Spectrum analysis</topic><topic>Storage capacity</topic><topic>Structural stability</topic><topic>Titanium</topic><topic>Tunnel construction</topic><topic>tunnel‐type VO2(B)</topic><topic>Vanadium</topic><topic>Vanadium dioxide</topic><topic>Vanadium oxides</topic><topic>Zinc</topic><topic>zinc ion battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shiwen</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Zhao, Kang</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Luo, Nairui</creatorcontrib><creatorcontrib>Zhao, Jianan</creatorcontrib><creatorcontrib>Wu, Shide</creatorcontrib><creatorcontrib>Ding, Junwei</creatorcontrib><creatorcontrib>Fang, Shaoming</creatorcontrib><creatorcontrib>Cheng, Fangyi</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Carbon energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shiwen</au><au>Zhang, Hang</au><au>Zhao, Kang</au><au>Liu, Wenqing</au><au>Luo, Nairui</au><au>Zhao, Jianan</au><au>Wu, Shide</au><au>Ding, Junwei</au><au>Fang, Shaoming</au><au>Cheng, Fangyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing interstitial boron‐doped tunnel‐type vanadium dioxide cathode for enhancing zinc ion storage capability</atitle><jtitle>Carbon energy</jtitle><date>2023-08</date><risdate>2023</risdate><volume>5</volume><issue>8</issue><epage>n/a</epage><issn>2637-9368</issn><eissn>2637-9368</eissn><abstract>Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials. Here, an interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Various analysis techniques demonstrate that boron resides in the interstitial site of VO2(B) and such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, we found that the boron doping level has a saturation limit peculiarity as proved by the quantitative analysis. Notably, the 2 at.% boron‐doped VO2(B) shows enhanced zinc ion storage performance with a high storage capacity of 281.7 mAh g−1 at 0.1 A g−1, excellent rate performance of 142.2 mAh g−1 at 20 A g−1, and long cycle stability up to 1000 cycles with the capacity retention of 133.3 mAh g−1 at 5 A g−1. Additionally, the successful preparation of the boron‐doped tunnel‐type α‐MnO2 further indicates that the interstitial boron doping approach is a general strategy, which supplies a new chance to design other types of functional electrode materials for multivalence batteries.
An interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, the saturation limit peculiarity of the boron doping level has been determined by the quantitative analysis.</abstract><cop>Beijing</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cey2.330</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7661-2554</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2637-9368 |
ispartof | Carbon energy, 2023-08, Vol.5 (8), p.n/a |
issn | 2637-9368 2637-9368 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0a1f3ea218f248ff9a5a302119e43302 |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Boron cathode Cathodes Crystal structure Doping Electrochemical analysis Electrochemistry Electrode materials Electrodes interstitial boron doping Ion storage Manganese dioxide Spectrum analysis Storage capacity Structural stability Titanium Tunnel construction tunnel‐type VO2(B) Vanadium Vanadium dioxide Vanadium oxides Zinc zinc ion battery |
title | Designing interstitial boron‐doped tunnel‐type vanadium dioxide cathode for enhancing zinc ion storage capability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20interstitial%20boron%E2%80%90doped%20tunnel%E2%80%90type%20vanadium%20dioxide%20cathode%20for%20enhancing%20zinc%20ion%20storage%20capability&rft.jtitle=Carbon%20energy&rft.au=Wang,%20Shiwen&rft.date=2023-08&rft.volume=5&rft.issue=8&rft.epage=n/a&rft.issn=2637-9368&rft.eissn=2637-9368&rft_id=info:doi/10.1002/cey2.330&rft_dat=%3Cproquest_doaj_%3E2857745287%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857745287&rft_id=info:pmid/&rfr_iscdi=true |