Loading…

Designing interstitial boron‐doped tunnel‐type vanadium dioxide cathode for enhancing zinc ion storage capability

Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials. Here, an interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Various analysis techniques demonstrate that boron resides in the interstitial sit...

Full description

Saved in:
Bibliographic Details
Published in:Carbon energy 2023-08, Vol.5 (8), p.n/a
Main Authors: Wang, Shiwen, Zhang, Hang, Zhao, Kang, Liu, Wenqing, Luo, Nairui, Zhao, Jianan, Wu, Shide, Ding, Junwei, Fang, Shaoming, Cheng, Fangyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203
cites cdi_FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203
container_end_page n/a
container_issue 8
container_start_page
container_title Carbon energy
container_volume 5
creator Wang, Shiwen
Zhang, Hang
Zhao, Kang
Liu, Wenqing
Luo, Nairui
Zhao, Jianan
Wu, Shide
Ding, Junwei
Fang, Shaoming
Cheng, Fangyi
description Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials. Here, an interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Various analysis techniques demonstrate that boron resides in the interstitial site of VO2(B) and such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, we found that the boron doping level has a saturation limit peculiarity as proved by the quantitative analysis. Notably, the 2 at.% boron‐doped VO2(B) shows enhanced zinc ion storage performance with a high storage capacity of 281.7 mAh g−1 at 0.1 A g−1, excellent rate performance of 142.2 mAh g−1 at 20 A g−1, and long cycle stability up to 1000 cycles with the capacity retention of 133.3 mAh g−1 at 5 A g−1. Additionally, the successful preparation of the boron‐doped tunnel‐type α‐MnO2 further indicates that the interstitial boron doping approach is a general strategy, which supplies a new chance to design other types of functional electrode materials for multivalence batteries. An interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, the saturation limit peculiarity of the boron doping level has been determined by the quantitative analysis.
doi_str_mv 10.1002/cey2.330
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a1f3ea218f248ff9a5a302119e43302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0a1f3ea218f248ff9a5a302119e43302</doaj_id><sourcerecordid>2857745287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203</originalsourceid><addsrcrecordid>eNp1kctu1TAQQCMEElVbiU-wxIZNih-5sb1El9JWqtRNWbCyJn7c-iq1g-20pCs-od_Il9ThIsSG1Tx0dGY00zTvCD4jGNOP2i70jDH8qjmiPeOtZL14_U_-tjnNeY8rSjjBVB4182eb_S74sEM-FJty8cXDiIaYYvj189nEyRpU5hDsWMuyTBY9QADj53tkfPzhjUUayl2s0cWEbLiDoFffkw8a-RhQLjHBbsUmGPzoy3LSvHEwZnv6Jx43X7-c324v2-ubi6vtp-tWM8lwO2jOnSVSg5E97cEZIjuAwXSDE9JS4QCbvtfQM-wwYO6w4AM2Rhg3AMXsuLk6eE2EvZqSv4e0qAhe_W7EtFOQitejVRiIYxYoEY52wjkJG2D1TkTarl6UVtf7g2tK8ftsc1H7OKdQ11dUbDjvNlTwSn04UDrFnJN1f6cSrNYfqfVHqhor2h7QRz_a5b-c2p5_oyv_Atqclrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857745287</pqid></control><display><type>article</type><title>Designing interstitial boron‐doped tunnel‐type vanadium dioxide cathode for enhancing zinc ion storage capability</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Wang, Shiwen ; Zhang, Hang ; Zhao, Kang ; Liu, Wenqing ; Luo, Nairui ; Zhao, Jianan ; Wu, Shide ; Ding, Junwei ; Fang, Shaoming ; Cheng, Fangyi</creator><creatorcontrib>Wang, Shiwen ; Zhang, Hang ; Zhao, Kang ; Liu, Wenqing ; Luo, Nairui ; Zhao, Jianan ; Wu, Shide ; Ding, Junwei ; Fang, Shaoming ; Cheng, Fangyi</creatorcontrib><description>Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials. Here, an interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Various analysis techniques demonstrate that boron resides in the interstitial site of VO2(B) and such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, we found that the boron doping level has a saturation limit peculiarity as proved by the quantitative analysis. Notably, the 2 at.% boron‐doped VO2(B) shows enhanced zinc ion storage performance with a high storage capacity of 281.7 mAh g−1 at 0.1 A g−1, excellent rate performance of 142.2 mAh g−1 at 20 A g−1, and long cycle stability up to 1000 cycles with the capacity retention of 133.3 mAh g−1 at 5 A g−1. Additionally, the successful preparation of the boron‐doped tunnel‐type α‐MnO2 further indicates that the interstitial boron doping approach is a general strategy, which supplies a new chance to design other types of functional electrode materials for multivalence batteries. An interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, the saturation limit peculiarity of the boron doping level has been determined by the quantitative analysis.</description><identifier>ISSN: 2637-9368</identifier><identifier>EISSN: 2637-9368</identifier><identifier>DOI: 10.1002/cey2.330</identifier><language>eng</language><publisher>Beijing: John Wiley &amp; Sons, Inc</publisher><subject>Boron ; cathode ; Cathodes ; Crystal structure ; Doping ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrodes ; interstitial boron doping ; Ion storage ; Manganese dioxide ; Spectrum analysis ; Storage capacity ; Structural stability ; Titanium ; Tunnel construction ; tunnel‐type VO2(B) ; Vanadium ; Vanadium dioxide ; Vanadium oxides ; Zinc ; zinc ion battery</subject><ispartof>Carbon energy, 2023-08, Vol.5 (8), p.n/a</ispartof><rights>2023 The Authors. published by Wenzhou University and John Wiley &amp; Sons Australia, Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203</citedby><cites>FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203</cites><orcidid>0000-0001-7661-2554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857745287/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857745287?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11561,25752,27923,27924,37011,44589,46051,46475,74897</link.rule.ids></links><search><creatorcontrib>Wang, Shiwen</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Zhao, Kang</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Luo, Nairui</creatorcontrib><creatorcontrib>Zhao, Jianan</creatorcontrib><creatorcontrib>Wu, Shide</creatorcontrib><creatorcontrib>Ding, Junwei</creatorcontrib><creatorcontrib>Fang, Shaoming</creatorcontrib><creatorcontrib>Cheng, Fangyi</creatorcontrib><title>Designing interstitial boron‐doped tunnel‐type vanadium dioxide cathode for enhancing zinc ion storage capability</title><title>Carbon energy</title><description>Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials. Here, an interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Various analysis techniques demonstrate that boron resides in the interstitial site of VO2(B) and such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, we found that the boron doping level has a saturation limit peculiarity as proved by the quantitative analysis. Notably, the 2 at.% boron‐doped VO2(B) shows enhanced zinc ion storage performance with a high storage capacity of 281.7 mAh g−1 at 0.1 A g−1, excellent rate performance of 142.2 mAh g−1 at 20 A g−1, and long cycle stability up to 1000 cycles with the capacity retention of 133.3 mAh g−1 at 5 A g−1. Additionally, the successful preparation of the boron‐doped tunnel‐type α‐MnO2 further indicates that the interstitial boron doping approach is a general strategy, which supplies a new chance to design other types of functional electrode materials for multivalence batteries. An interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, the saturation limit peculiarity of the boron doping level has been determined by the quantitative analysis.</description><subject>Boron</subject><subject>cathode</subject><subject>Cathodes</subject><subject>Crystal structure</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>interstitial boron doping</subject><subject>Ion storage</subject><subject>Manganese dioxide</subject><subject>Spectrum analysis</subject><subject>Storage capacity</subject><subject>Structural stability</subject><subject>Titanium</subject><subject>Tunnel construction</subject><subject>tunnel‐type VO2(B)</subject><subject>Vanadium</subject><subject>Vanadium dioxide</subject><subject>Vanadium oxides</subject><subject>Zinc</subject><subject>zinc ion battery</subject><issn>2637-9368</issn><issn>2637-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kctu1TAQQCMEElVbiU-wxIZNih-5sb1El9JWqtRNWbCyJn7c-iq1g-20pCs-od_Il9ThIsSG1Tx0dGY00zTvCD4jGNOP2i70jDH8qjmiPeOtZL14_U_-tjnNeY8rSjjBVB4182eb_S74sEM-FJty8cXDiIaYYvj189nEyRpU5hDsWMuyTBY9QADj53tkfPzhjUUayl2s0cWEbLiDoFffkw8a-RhQLjHBbsUmGPzoy3LSvHEwZnv6Jx43X7-c324v2-ubi6vtp-tWM8lwO2jOnSVSg5E97cEZIjuAwXSDE9JS4QCbvtfQM-wwYO6w4AM2Rhg3AMXsuLk6eE2EvZqSv4e0qAhe_W7EtFOQitejVRiIYxYoEY52wjkJG2D1TkTarl6UVtf7g2tK8ftsc1H7OKdQ11dUbDjvNlTwSn04UDrFnJN1f6cSrNYfqfVHqhor2h7QRz_a5b-c2p5_oyv_Atqclrw</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Wang, Shiwen</creator><creator>Zhang, Hang</creator><creator>Zhao, Kang</creator><creator>Liu, Wenqing</creator><creator>Luo, Nairui</creator><creator>Zhao, Jianan</creator><creator>Wu, Shide</creator><creator>Ding, Junwei</creator><creator>Fang, Shaoming</creator><creator>Cheng, Fangyi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7661-2554</orcidid></search><sort><creationdate>202308</creationdate><title>Designing interstitial boron‐doped tunnel‐type vanadium dioxide cathode for enhancing zinc ion storage capability</title><author>Wang, Shiwen ; Zhang, Hang ; Zhao, Kang ; Liu, Wenqing ; Luo, Nairui ; Zhao, Jianan ; Wu, Shide ; Ding, Junwei ; Fang, Shaoming ; Cheng, Fangyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boron</topic><topic>cathode</topic><topic>Cathodes</topic><topic>Crystal structure</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>interstitial boron doping</topic><topic>Ion storage</topic><topic>Manganese dioxide</topic><topic>Spectrum analysis</topic><topic>Storage capacity</topic><topic>Structural stability</topic><topic>Titanium</topic><topic>Tunnel construction</topic><topic>tunnel‐type VO2(B)</topic><topic>Vanadium</topic><topic>Vanadium dioxide</topic><topic>Vanadium oxides</topic><topic>Zinc</topic><topic>zinc ion battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shiwen</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Zhao, Kang</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Luo, Nairui</creatorcontrib><creatorcontrib>Zhao, Jianan</creatorcontrib><creatorcontrib>Wu, Shide</creatorcontrib><creatorcontrib>Ding, Junwei</creatorcontrib><creatorcontrib>Fang, Shaoming</creatorcontrib><creatorcontrib>Cheng, Fangyi</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Carbon energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shiwen</au><au>Zhang, Hang</au><au>Zhao, Kang</au><au>Liu, Wenqing</au><au>Luo, Nairui</au><au>Zhao, Jianan</au><au>Wu, Shide</au><au>Ding, Junwei</au><au>Fang, Shaoming</au><au>Cheng, Fangyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing interstitial boron‐doped tunnel‐type vanadium dioxide cathode for enhancing zinc ion storage capability</atitle><jtitle>Carbon energy</jtitle><date>2023-08</date><risdate>2023</risdate><volume>5</volume><issue>8</issue><epage>n/a</epage><issn>2637-9368</issn><eissn>2637-9368</eissn><abstract>Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials. Here, an interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Various analysis techniques demonstrate that boron resides in the interstitial site of VO2(B) and such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, we found that the boron doping level has a saturation limit peculiarity as proved by the quantitative analysis. Notably, the 2 at.% boron‐doped VO2(B) shows enhanced zinc ion storage performance with a high storage capacity of 281.7 mAh g−1 at 0.1 A g−1, excellent rate performance of 142.2 mAh g−1 at 20 A g−1, and long cycle stability up to 1000 cycles with the capacity retention of 133.3 mAh g−1 at 5 A g−1. Additionally, the successful preparation of the boron‐doped tunnel‐type α‐MnO2 further indicates that the interstitial boron doping approach is a general strategy, which supplies a new chance to design other types of functional electrode materials for multivalence batteries. An interstitial boron‐doped tunnel‐type VO2(B) is constructed via a facile hydrothermal method. Such interstitial doping can boost the zinc storage kinetics and structural stability of VO2(B) cathode during cycling. Interestingly, the saturation limit peculiarity of the boron doping level has been determined by the quantitative analysis.</abstract><cop>Beijing</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cey2.330</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7661-2554</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2637-9368
ispartof Carbon energy, 2023-08, Vol.5 (8), p.n/a
issn 2637-9368
2637-9368
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0a1f3ea218f248ff9a5a302119e43302
source Publicly Available Content Database; Wiley Open Access
subjects Boron
cathode
Cathodes
Crystal structure
Doping
Electrochemical analysis
Electrochemistry
Electrode materials
Electrodes
interstitial boron doping
Ion storage
Manganese dioxide
Spectrum analysis
Storage capacity
Structural stability
Titanium
Tunnel construction
tunnel‐type VO2(B)
Vanadium
Vanadium dioxide
Vanadium oxides
Zinc
zinc ion battery
title Designing interstitial boron‐doped tunnel‐type vanadium dioxide cathode for enhancing zinc ion storage capability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20interstitial%20boron%E2%80%90doped%20tunnel%E2%80%90type%20vanadium%20dioxide%20cathode%20for%20enhancing%20zinc%20ion%20storage%20capability&rft.jtitle=Carbon%20energy&rft.au=Wang,%20Shiwen&rft.date=2023-08&rft.volume=5&rft.issue=8&rft.epage=n/a&rft.issn=2637-9368&rft.eissn=2637-9368&rft_id=info:doi/10.1002/cey2.330&rft_dat=%3Cproquest_doaj_%3E2857745287%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3930-bc77fe19cad9626afd194aabd4bf89e28fa0d66ca630f0a07f087b0dd8dfba203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857745287&rft_id=info:pmid/&rfr_iscdi=true