Loading…

Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking

The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our...

Full description

Saved in:
Bibliographic Details
Published in:iScience 2022-05, Vol.25 (5), p.104197-104197, Article 104197
Main Authors: Naor, Tal, Nogin, Yevgeni, Nehme, Elias, Ferdman, Boris, Weiss, Lucien E., Alalouf, Onit, Shechtman, Yoav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3
cites cdi_FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3
container_end_page 104197
container_issue 5
container_start_page 104197
container_title iScience
container_volume 25
creator Naor, Tal
Nogin, Yevgeni
Nehme, Elias
Ferdman, Boris
Weiss, Lucien E.
Alalouf, Onit
Shechtman, Yoav
description The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our understanding of genome organization challenge this claim. Here, we use high spatiotemporal resolution, 4D (x, y, z and time) localization microscopy by point-spread-function (PSF) engineering and deep learning-based image analysis, for live imaging of mouse embryonic fibroblast (MEF 3T3) and MEF 3T3 double Lamin A Knockout (LmnaKO) cell lines, to characterize telomere diffusion during the interphase. We detected varying constraint levels imposed on chromatin, which are prominently decreased during G0/G1. Our 4D measurements of telomere diffusion offer an effective method to investigate chromatin dynamics and reveal cell-cycle-dependent motion constraints, which may be caused by various cellular processes. [Display omitted] •PSF engineering allows scan-free, high spatiotemporal live 3D telomere tracking•During the G0/G1 phase, telomere motion is less constrained than in other phases•There is observable difference between lateral (xy) and axial (z) chromatin motion•In Lamin A-depleted cells, motion constraint was reduced Optical imaging; Biological sciences; Chromosome organization; Biophysics
doi_str_mv 10.1016/j.isci.2022.104197
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a3c95e8a3df48e3b884d798c1f90c53</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589004222004679</els_id><doaj_id>oai_doaj_org_article_0a3c95e8a3df48e3b884d798c1f90c53</doaj_id><sourcerecordid>2658646480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3</originalsourceid><addsrcrecordid>eNp9kd9rFDEQxxdRbKn9B3yQffRlz_zeDYggVWuhIII--BSyyeQu5272TLIH-9-b69bSvgiBhJnvfCYz36p6jdEGIyze7Tc-Gb8hiJASYFi2z6pzwjvZIMTI80fvs-oypT1CiJTDpHhZnVHOJCOUnle_vs86ZO8WH7a1gWFozGIGaCwcIFgIuTa7OI06-1DbJejRm1TbOZ7kPmSIh51OUPdLPfgj1PRTnaM2v0v6VfXC6SHB5f19Uf388vnH1dfm9tv1zdXH28ZwgnMDGMAJ0XJmrZS9daIH3AIAJrTtpdRUMK2twE6UMR3uWiYMIlRIxokzhl5UNyvXTnqvDtGPOi5q0l7dBaa4VTpmX4ZSSFMjOXSaWsc6oH3XMdvKzmAnkeG0sD6srMPcj2BNmT_q4Qn0aSb4ndpORyURx4LyAnh7D4jTnxlSVmOxqaxVB5jmpIjgnWCCdahIySo1cUopgntog5E6Waz26mSxOlmsVotL0ZvHH3wo-WdoEbxfBVBWfvQQVUFAMGB9BJPLTvz_-H8BjuC5CA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658646480</pqid></control><display><type>article</type><title>Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Naor, Tal ; Nogin, Yevgeni ; Nehme, Elias ; Ferdman, Boris ; Weiss, Lucien E. ; Alalouf, Onit ; Shechtman, Yoav</creator><creatorcontrib>Naor, Tal ; Nogin, Yevgeni ; Nehme, Elias ; Ferdman, Boris ; Weiss, Lucien E. ; Alalouf, Onit ; Shechtman, Yoav</creatorcontrib><description>The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our understanding of genome organization challenge this claim. Here, we use high spatiotemporal resolution, 4D (x, y, z and time) localization microscopy by point-spread-function (PSF) engineering and deep learning-based image analysis, for live imaging of mouse embryonic fibroblast (MEF 3T3) and MEF 3T3 double Lamin A Knockout (LmnaKO) cell lines, to characterize telomere diffusion during the interphase. We detected varying constraint levels imposed on chromatin, which are prominently decreased during G0/G1. Our 4D measurements of telomere diffusion offer an effective method to investigate chromatin dynamics and reveal cell-cycle-dependent motion constraints, which may be caused by various cellular processes. [Display omitted] •PSF engineering allows scan-free, high spatiotemporal live 3D telomere tracking•During the G0/G1 phase, telomere motion is less constrained than in other phases•There is observable difference between lateral (xy) and axial (z) chromatin motion•In Lamin A-depleted cells, motion constraint was reduced Optical imaging; Biological sciences; Chromosome organization; Biophysics</description><identifier>ISSN: 2589-0042</identifier><identifier>EISSN: 2589-0042</identifier><identifier>DOI: 10.1016/j.isci.2022.104197</identifier><identifier>PMID: 35494233</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biological sciences ; Biophysics ; Chromosome organization ; Optical imaging</subject><ispartof>iScience, 2022-05, Vol.25 (5), p.104197-104197, Article 104197</ispartof><rights>2022 The Author(s)</rights><rights>2022 The Author(s).</rights><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3</citedby><cites>FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051635/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2589004222004679$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35494233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naor, Tal</creatorcontrib><creatorcontrib>Nogin, Yevgeni</creatorcontrib><creatorcontrib>Nehme, Elias</creatorcontrib><creatorcontrib>Ferdman, Boris</creatorcontrib><creatorcontrib>Weiss, Lucien E.</creatorcontrib><creatorcontrib>Alalouf, Onit</creatorcontrib><creatorcontrib>Shechtman, Yoav</creatorcontrib><title>Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking</title><title>iScience</title><addtitle>iScience</addtitle><description>The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our understanding of genome organization challenge this claim. Here, we use high spatiotemporal resolution, 4D (x, y, z and time) localization microscopy by point-spread-function (PSF) engineering and deep learning-based image analysis, for live imaging of mouse embryonic fibroblast (MEF 3T3) and MEF 3T3 double Lamin A Knockout (LmnaKO) cell lines, to characterize telomere diffusion during the interphase. We detected varying constraint levels imposed on chromatin, which are prominently decreased during G0/G1. Our 4D measurements of telomere diffusion offer an effective method to investigate chromatin dynamics and reveal cell-cycle-dependent motion constraints, which may be caused by various cellular processes. [Display omitted] •PSF engineering allows scan-free, high spatiotemporal live 3D telomere tracking•During the G0/G1 phase, telomere motion is less constrained than in other phases•There is observable difference between lateral (xy) and axial (z) chromatin motion•In Lamin A-depleted cells, motion constraint was reduced Optical imaging; Biological sciences; Chromosome organization; Biophysics</description><subject>Biological sciences</subject><subject>Biophysics</subject><subject>Chromosome organization</subject><subject>Optical imaging</subject><issn>2589-0042</issn><issn>2589-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kd9rFDEQxxdRbKn9B3yQffRlz_zeDYggVWuhIII--BSyyeQu5272TLIH-9-b69bSvgiBhJnvfCYz36p6jdEGIyze7Tc-Gb8hiJASYFi2z6pzwjvZIMTI80fvs-oypT1CiJTDpHhZnVHOJCOUnle_vs86ZO8WH7a1gWFozGIGaCwcIFgIuTa7OI06-1DbJejRm1TbOZ7kPmSIh51OUPdLPfgj1PRTnaM2v0v6VfXC6SHB5f19Uf388vnH1dfm9tv1zdXH28ZwgnMDGMAJ0XJmrZS9daIH3AIAJrTtpdRUMK2twE6UMR3uWiYMIlRIxokzhl5UNyvXTnqvDtGPOi5q0l7dBaa4VTpmX4ZSSFMjOXSaWsc6oH3XMdvKzmAnkeG0sD6srMPcj2BNmT_q4Qn0aSb4ndpORyURx4LyAnh7D4jTnxlSVmOxqaxVB5jmpIjgnWCCdahIySo1cUopgntog5E6Waz26mSxOlmsVotL0ZvHH3wo-WdoEbxfBVBWfvQQVUFAMGB9BJPLTvz_-H8BjuC5CA</recordid><startdate>20220520</startdate><enddate>20220520</enddate><creator>Naor, Tal</creator><creator>Nogin, Yevgeni</creator><creator>Nehme, Elias</creator><creator>Ferdman, Boris</creator><creator>Weiss, Lucien E.</creator><creator>Alalouf, Onit</creator><creator>Shechtman, Yoav</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220520</creationdate><title>Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking</title><author>Naor, Tal ; Nogin, Yevgeni ; Nehme, Elias ; Ferdman, Boris ; Weiss, Lucien E. ; Alalouf, Onit ; Shechtman, Yoav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological sciences</topic><topic>Biophysics</topic><topic>Chromosome organization</topic><topic>Optical imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naor, Tal</creatorcontrib><creatorcontrib>Nogin, Yevgeni</creatorcontrib><creatorcontrib>Nehme, Elias</creatorcontrib><creatorcontrib>Ferdman, Boris</creatorcontrib><creatorcontrib>Weiss, Lucien E.</creatorcontrib><creatorcontrib>Alalouf, Onit</creatorcontrib><creatorcontrib>Shechtman, Yoav</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>iScience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naor, Tal</au><au>Nogin, Yevgeni</au><au>Nehme, Elias</au><au>Ferdman, Boris</au><au>Weiss, Lucien E.</au><au>Alalouf, Onit</au><au>Shechtman, Yoav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking</atitle><jtitle>iScience</jtitle><addtitle>iScience</addtitle><date>2022-05-20</date><risdate>2022</risdate><volume>25</volume><issue>5</issue><spage>104197</spage><epage>104197</epage><pages>104197-104197</pages><artnum>104197</artnum><issn>2589-0042</issn><eissn>2589-0042</eissn><abstract>The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our understanding of genome organization challenge this claim. Here, we use high spatiotemporal resolution, 4D (x, y, z and time) localization microscopy by point-spread-function (PSF) engineering and deep learning-based image analysis, for live imaging of mouse embryonic fibroblast (MEF 3T3) and MEF 3T3 double Lamin A Knockout (LmnaKO) cell lines, to characterize telomere diffusion during the interphase. We detected varying constraint levels imposed on chromatin, which are prominently decreased during G0/G1. Our 4D measurements of telomere diffusion offer an effective method to investigate chromatin dynamics and reveal cell-cycle-dependent motion constraints, which may be caused by various cellular processes. [Display omitted] •PSF engineering allows scan-free, high spatiotemporal live 3D telomere tracking•During the G0/G1 phase, telomere motion is less constrained than in other phases•There is observable difference between lateral (xy) and axial (z) chromatin motion•In Lamin A-depleted cells, motion constraint was reduced Optical imaging; Biological sciences; Chromosome organization; Biophysics</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35494233</pmid><doi>10.1016/j.isci.2022.104197</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2589-0042
ispartof iScience, 2022-05, Vol.25 (5), p.104197-104197, Article 104197
issn 2589-0042
2589-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0a3c95e8a3df48e3b884d798c1f90c53
source ScienceDirect Journals; PubMed Central
subjects Biological sciences
Biophysics
Chromosome organization
Optical imaging
title Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20cell-cycle-dependent%20chromatin%20dynamics%20during%20interphase%20by%20live%203D%20tracking&rft.jtitle=iScience&rft.au=Naor,%20Tal&rft.date=2022-05-20&rft.volume=25&rft.issue=5&rft.spage=104197&rft.epage=104197&rft.pages=104197-104197&rft.artnum=104197&rft.issn=2589-0042&rft.eissn=2589-0042&rft_id=info:doi/10.1016/j.isci.2022.104197&rft_dat=%3Cproquest_doaj_%3E2658646480%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2658646480&rft_id=info:pmid/35494233&rfr_iscdi=true