Loading…
Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking
The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our...
Saved in:
Published in: | iScience 2022-05, Vol.25 (5), p.104197-104197, Article 104197 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3 |
container_end_page | 104197 |
container_issue | 5 |
container_start_page | 104197 |
container_title | iScience |
container_volume | 25 |
creator | Naor, Tal Nogin, Yevgeni Nehme, Elias Ferdman, Boris Weiss, Lucien E. Alalouf, Onit Shechtman, Yoav |
description | The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our understanding of genome organization challenge this claim. Here, we use high spatiotemporal resolution, 4D (x, y, z and time) localization microscopy by point-spread-function (PSF) engineering and deep learning-based image analysis, for live imaging of mouse embryonic fibroblast (MEF 3T3) and MEF 3T3 double Lamin A Knockout (LmnaKO) cell lines, to characterize telomere diffusion during the interphase. We detected varying constraint levels imposed on chromatin, which are prominently decreased during G0/G1. Our 4D measurements of telomere diffusion offer an effective method to investigate chromatin dynamics and reveal cell-cycle-dependent motion constraints, which may be caused by various cellular processes.
[Display omitted]
•PSF engineering allows scan-free, high spatiotemporal live 3D telomere tracking•During the G0/G1 phase, telomere motion is less constrained than in other phases•There is observable difference between lateral (xy) and axial (z) chromatin motion•In Lamin A-depleted cells, motion constraint was reduced
Optical imaging; Biological sciences; Chromosome organization; Biophysics |
doi_str_mv | 10.1016/j.isci.2022.104197 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a3c95e8a3df48e3b884d798c1f90c53</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589004222004679</els_id><doaj_id>oai_doaj_org_article_0a3c95e8a3df48e3b884d798c1f90c53</doaj_id><sourcerecordid>2658646480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3</originalsourceid><addsrcrecordid>eNp9kd9rFDEQxxdRbKn9B3yQffRlz_zeDYggVWuhIII--BSyyeQu5272TLIH-9-b69bSvgiBhJnvfCYz36p6jdEGIyze7Tc-Gb8hiJASYFi2z6pzwjvZIMTI80fvs-oypT1CiJTDpHhZnVHOJCOUnle_vs86ZO8WH7a1gWFozGIGaCwcIFgIuTa7OI06-1DbJejRm1TbOZ7kPmSIh51OUPdLPfgj1PRTnaM2v0v6VfXC6SHB5f19Uf388vnH1dfm9tv1zdXH28ZwgnMDGMAJ0XJmrZS9daIH3AIAJrTtpdRUMK2twE6UMR3uWiYMIlRIxokzhl5UNyvXTnqvDtGPOi5q0l7dBaa4VTpmX4ZSSFMjOXSaWsc6oH3XMdvKzmAnkeG0sD6srMPcj2BNmT_q4Qn0aSb4ndpORyURx4LyAnh7D4jTnxlSVmOxqaxVB5jmpIjgnWCCdahIySo1cUopgntog5E6Waz26mSxOlmsVotL0ZvHH3wo-WdoEbxfBVBWfvQQVUFAMGB9BJPLTvz_-H8BjuC5CA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658646480</pqid></control><display><type>article</type><title>Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Naor, Tal ; Nogin, Yevgeni ; Nehme, Elias ; Ferdman, Boris ; Weiss, Lucien E. ; Alalouf, Onit ; Shechtman, Yoav</creator><creatorcontrib>Naor, Tal ; Nogin, Yevgeni ; Nehme, Elias ; Ferdman, Boris ; Weiss, Lucien E. ; Alalouf, Onit ; Shechtman, Yoav</creatorcontrib><description>The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our understanding of genome organization challenge this claim. Here, we use high spatiotemporal resolution, 4D (x, y, z and time) localization microscopy by point-spread-function (PSF) engineering and deep learning-based image analysis, for live imaging of mouse embryonic fibroblast (MEF 3T3) and MEF 3T3 double Lamin A Knockout (LmnaKO) cell lines, to characterize telomere diffusion during the interphase. We detected varying constraint levels imposed on chromatin, which are prominently decreased during G0/G1. Our 4D measurements of telomere diffusion offer an effective method to investigate chromatin dynamics and reveal cell-cycle-dependent motion constraints, which may be caused by various cellular processes.
[Display omitted]
•PSF engineering allows scan-free, high spatiotemporal live 3D telomere tracking•During the G0/G1 phase, telomere motion is less constrained than in other phases•There is observable difference between lateral (xy) and axial (z) chromatin motion•In Lamin A-depleted cells, motion constraint was reduced
Optical imaging; Biological sciences; Chromosome organization; Biophysics</description><identifier>ISSN: 2589-0042</identifier><identifier>EISSN: 2589-0042</identifier><identifier>DOI: 10.1016/j.isci.2022.104197</identifier><identifier>PMID: 35494233</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biological sciences ; Biophysics ; Chromosome organization ; Optical imaging</subject><ispartof>iScience, 2022-05, Vol.25 (5), p.104197-104197, Article 104197</ispartof><rights>2022 The Author(s)</rights><rights>2022 The Author(s).</rights><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3</citedby><cites>FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051635/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2589004222004679$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35494233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naor, Tal</creatorcontrib><creatorcontrib>Nogin, Yevgeni</creatorcontrib><creatorcontrib>Nehme, Elias</creatorcontrib><creatorcontrib>Ferdman, Boris</creatorcontrib><creatorcontrib>Weiss, Lucien E.</creatorcontrib><creatorcontrib>Alalouf, Onit</creatorcontrib><creatorcontrib>Shechtman, Yoav</creatorcontrib><title>Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking</title><title>iScience</title><addtitle>iScience</addtitle><description>The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our understanding of genome organization challenge this claim. Here, we use high spatiotemporal resolution, 4D (x, y, z and time) localization microscopy by point-spread-function (PSF) engineering and deep learning-based image analysis, for live imaging of mouse embryonic fibroblast (MEF 3T3) and MEF 3T3 double Lamin A Knockout (LmnaKO) cell lines, to characterize telomere diffusion during the interphase. We detected varying constraint levels imposed on chromatin, which are prominently decreased during G0/G1. Our 4D measurements of telomere diffusion offer an effective method to investigate chromatin dynamics and reveal cell-cycle-dependent motion constraints, which may be caused by various cellular processes.
[Display omitted]
•PSF engineering allows scan-free, high spatiotemporal live 3D telomere tracking•During the G0/G1 phase, telomere motion is less constrained than in other phases•There is observable difference between lateral (xy) and axial (z) chromatin motion•In Lamin A-depleted cells, motion constraint was reduced
Optical imaging; Biological sciences; Chromosome organization; Biophysics</description><subject>Biological sciences</subject><subject>Biophysics</subject><subject>Chromosome organization</subject><subject>Optical imaging</subject><issn>2589-0042</issn><issn>2589-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kd9rFDEQxxdRbKn9B3yQffRlz_zeDYggVWuhIII--BSyyeQu5272TLIH-9-b69bSvgiBhJnvfCYz36p6jdEGIyze7Tc-Gb8hiJASYFi2z6pzwjvZIMTI80fvs-oypT1CiJTDpHhZnVHOJCOUnle_vs86ZO8WH7a1gWFozGIGaCwcIFgIuTa7OI06-1DbJejRm1TbOZ7kPmSIh51OUPdLPfgj1PRTnaM2v0v6VfXC6SHB5f19Uf388vnH1dfm9tv1zdXH28ZwgnMDGMAJ0XJmrZS9daIH3AIAJrTtpdRUMK2twE6UMR3uWiYMIlRIxokzhl5UNyvXTnqvDtGPOi5q0l7dBaa4VTpmX4ZSSFMjOXSaWsc6oH3XMdvKzmAnkeG0sD6srMPcj2BNmT_q4Qn0aSb4ndpORyURx4LyAnh7D4jTnxlSVmOxqaxVB5jmpIjgnWCCdahIySo1cUopgntog5E6Waz26mSxOlmsVotL0ZvHH3wo-WdoEbxfBVBWfvQQVUFAMGB9BJPLTvz_-H8BjuC5CA</recordid><startdate>20220520</startdate><enddate>20220520</enddate><creator>Naor, Tal</creator><creator>Nogin, Yevgeni</creator><creator>Nehme, Elias</creator><creator>Ferdman, Boris</creator><creator>Weiss, Lucien E.</creator><creator>Alalouf, Onit</creator><creator>Shechtman, Yoav</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220520</creationdate><title>Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking</title><author>Naor, Tal ; Nogin, Yevgeni ; Nehme, Elias ; Ferdman, Boris ; Weiss, Lucien E. ; Alalouf, Onit ; Shechtman, Yoav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological sciences</topic><topic>Biophysics</topic><topic>Chromosome organization</topic><topic>Optical imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naor, Tal</creatorcontrib><creatorcontrib>Nogin, Yevgeni</creatorcontrib><creatorcontrib>Nehme, Elias</creatorcontrib><creatorcontrib>Ferdman, Boris</creatorcontrib><creatorcontrib>Weiss, Lucien E.</creatorcontrib><creatorcontrib>Alalouf, Onit</creatorcontrib><creatorcontrib>Shechtman, Yoav</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>iScience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naor, Tal</au><au>Nogin, Yevgeni</au><au>Nehme, Elias</au><au>Ferdman, Boris</au><au>Weiss, Lucien E.</au><au>Alalouf, Onit</au><au>Shechtman, Yoav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking</atitle><jtitle>iScience</jtitle><addtitle>iScience</addtitle><date>2022-05-20</date><risdate>2022</risdate><volume>25</volume><issue>5</issue><spage>104197</spage><epage>104197</epage><pages>104197-104197</pages><artnum>104197</artnum><issn>2589-0042</issn><eissn>2589-0042</eissn><abstract>The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our understanding of genome organization challenge this claim. Here, we use high spatiotemporal resolution, 4D (x, y, z and time) localization microscopy by point-spread-function (PSF) engineering and deep learning-based image analysis, for live imaging of mouse embryonic fibroblast (MEF 3T3) and MEF 3T3 double Lamin A Knockout (LmnaKO) cell lines, to characterize telomere diffusion during the interphase. We detected varying constraint levels imposed on chromatin, which are prominently decreased during G0/G1. Our 4D measurements of telomere diffusion offer an effective method to investigate chromatin dynamics and reveal cell-cycle-dependent motion constraints, which may be caused by various cellular processes.
[Display omitted]
•PSF engineering allows scan-free, high spatiotemporal live 3D telomere tracking•During the G0/G1 phase, telomere motion is less constrained than in other phases•There is observable difference between lateral (xy) and axial (z) chromatin motion•In Lamin A-depleted cells, motion constraint was reduced
Optical imaging; Biological sciences; Chromosome organization; Biophysics</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35494233</pmid><doi>10.1016/j.isci.2022.104197</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2589-0042 |
ispartof | iScience, 2022-05, Vol.25 (5), p.104197-104197, Article 104197 |
issn | 2589-0042 2589-0042 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0a3c95e8a3df48e3b884d798c1f90c53 |
source | ScienceDirect Journals; PubMed Central |
subjects | Biological sciences Biophysics Chromosome organization Optical imaging |
title | Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20cell-cycle-dependent%20chromatin%20dynamics%20during%20interphase%20by%20live%203D%20tracking&rft.jtitle=iScience&rft.au=Naor,%20Tal&rft.date=2022-05-20&rft.volume=25&rft.issue=5&rft.spage=104197&rft.epage=104197&rft.pages=104197-104197&rft.artnum=104197&rft.issn=2589-0042&rft.eissn=2589-0042&rft_id=info:doi/10.1016/j.isci.2022.104197&rft_dat=%3Cproquest_doaj_%3E2658646480%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-e1eef66754dd99bdf6be17eee1237b99a364aad61f6104f18746c02369452fcc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2658646480&rft_id=info:pmid/35494233&rfr_iscdi=true |