Loading…
Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task
Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta–slow gamma cou...
Saved in:
Published in: | Nature communications 2017-12, Vol.8 (1), p.2182-9, Article 2182 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 2182 |
container_title | Nature communications |
container_volume | 8 |
creator | Tamura, Makoto Spellman, Timothy J. Rosen, Andrew M. Gogos, Joseph A. Gordon, Joshua A. |
description | Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta–slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta–gamma coupling during correct trials. Finally, epochs of high hippocampal theta–prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta–slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty.
Theta- and gamma-frequency oscillatory synchrony correlates with spatial working memory performance. Here the authors report increases in theta-gamma cross-frequency coupling as a compensatory mechism associated with better working memory performance in models of cognitive dysfunction in mice. |
doi_str_mv | 10.1038/s41467-017-02108-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a4e40e9395942198e3c246bdf143b55</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0a4e40e9395942198e3c246bdf143b55</doaj_id><sourcerecordid>1983423774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003</originalsourceid><addsrcrecordid>eNp1kstq3TAQhk1paUKaF-iiGLrpxo3usjaFEpoLBLrJXozl8YlPbEuV7Ja8feU4DSeBCsQI6ZtfGs1fFB8p-UoJr8-SoELpitA8GSV1Zd4Ux4wIWlHN-NuD9VFxmtKe5MENrYV4Xxwxw6Shkh4X9qoPwTsYAwxViNhFP80wlPMdzlDtYByhdH4JQz_tynaJawgYOx9HmByWviuhTAHmPif98fF-BUYcfXwoZ0j3H4p3HQwJT5_iSXF78eP2_Kq6-Xl5ff79pnKKqLmSTIquZsJpQGBtp6QCx1nLHCeEyU6hdAaJlqpzxBGBLYJsDDQtqLWwk-J6k2097G2I_QjxwXro7eOGjzsLce7dgJaAQEHQcCONYNTUyB0Tqmk7KngjZdb6tmmFpRmxdTjNEYYXoi9Ppv7O7vxvKzVXitRZ4MuTQPS_FkyzHfvkcBhgQr8kS402VEvKeEY_v0L3folT_qlM1VwwrrXIFNsoF31KuUnPj6HErm6wmxtsdoN9dIM1OenTYRnPKf96nwG-ASmsbcV4cPf_Zf8CejrA9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983423774</pqid></control><display><type>article</type><title>Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task</title><source>PubMed Central Free</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tamura, Makoto ; Spellman, Timothy J. ; Rosen, Andrew M. ; Gogos, Joseph A. ; Gordon, Joshua A.</creator><creatorcontrib>Tamura, Makoto ; Spellman, Timothy J. ; Rosen, Andrew M. ; Gogos, Joseph A. ; Gordon, Joshua A.</creatorcontrib><description>Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta–slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta–gamma coupling during correct trials. Finally, epochs of high hippocampal theta–prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta–slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty.
Theta- and gamma-frequency oscillatory synchrony correlates with spatial working memory performance. Here the authors report increases in theta-gamma cross-frequency coupling as a compensatory mechism associated with better working memory performance in models of cognitive dysfunction in mice.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-017-02108-9</identifier><identifier>PMID: 29259151</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1595/3922 ; 631/378/1689/1799 ; 631/378/2649/2150 ; 631/378/3920 ; Animal memory ; Animals ; Brain ; Brain architecture ; Cognitive ability ; Cognitive Dysfunction - diagnosis ; Cognitive Dysfunction - physiopathology ; Cortical Synchronization - physiology ; Coupling ; Disease Models, Animal ; Electrodes ; Female ; Gamma Rhythm - physiology ; Hippocampus ; Hippocampus - cytology ; Hippocampus - physiology ; Humanities and Social Sciences ; Humans ; Male ; Memory, Short-Term - physiology ; Mental task performance ; Mice ; Mice, Inbred C57BL ; multidisciplinary ; Neural Pathways - physiology ; Neurons - physiology ; Optogenetics ; Prefrontal cortex ; Prefrontal Cortex - cytology ; Prefrontal Cortex - physiology ; Rodents ; Science ; Science (multidisciplinary) ; Short term memory ; Spatial memory ; Synchronism ; Synchronization ; Theta Rhythm - physiology</subject><ispartof>Nature communications, 2017-12, Vol.8 (1), p.2182-9, Article 2182</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003</citedby><cites>FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003</cites><orcidid>0000-0002-7491-4476 ; 0000-0001-7034-8094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1983423774/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1983423774?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29259151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamura, Makoto</creatorcontrib><creatorcontrib>Spellman, Timothy J.</creatorcontrib><creatorcontrib>Rosen, Andrew M.</creatorcontrib><creatorcontrib>Gogos, Joseph A.</creatorcontrib><creatorcontrib>Gordon, Joshua A.</creatorcontrib><title>Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta–slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta–gamma coupling during correct trials. Finally, epochs of high hippocampal theta–prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta–slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty.
Theta- and gamma-frequency oscillatory synchrony correlates with spatial working memory performance. Here the authors report increases in theta-gamma cross-frequency coupling as a compensatory mechism associated with better working memory performance in models of cognitive dysfunction in mice.</description><subject>631/378/1595/3922</subject><subject>631/378/1689/1799</subject><subject>631/378/2649/2150</subject><subject>631/378/3920</subject><subject>Animal memory</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - diagnosis</subject><subject>Cognitive Dysfunction - physiopathology</subject><subject>Cortical Synchronization - physiology</subject><subject>Coupling</subject><subject>Disease Models, Animal</subject><subject>Electrodes</subject><subject>Female</subject><subject>Gamma Rhythm - physiology</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Male</subject><subject>Memory, Short-Term - physiology</subject><subject>Mental task performance</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>Neural Pathways - physiology</subject><subject>Neurons - physiology</subject><subject>Optogenetics</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - cytology</subject><subject>Prefrontal Cortex - physiology</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Short term memory</subject><subject>Spatial memory</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Theta Rhythm - physiology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kstq3TAQhk1paUKaF-iiGLrpxo3usjaFEpoLBLrJXozl8YlPbEuV7Ja8feU4DSeBCsQI6ZtfGs1fFB8p-UoJr8-SoELpitA8GSV1Zd4Ux4wIWlHN-NuD9VFxmtKe5MENrYV4Xxwxw6Shkh4X9qoPwTsYAwxViNhFP80wlPMdzlDtYByhdH4JQz_tynaJawgYOx9HmByWviuhTAHmPif98fF-BUYcfXwoZ0j3H4p3HQwJT5_iSXF78eP2_Kq6-Xl5ff79pnKKqLmSTIquZsJpQGBtp6QCx1nLHCeEyU6hdAaJlqpzxBGBLYJsDDQtqLWwk-J6k2097G2I_QjxwXro7eOGjzsLce7dgJaAQEHQcCONYNTUyB0Tqmk7KngjZdb6tmmFpRmxdTjNEYYXoi9Ppv7O7vxvKzVXitRZ4MuTQPS_FkyzHfvkcBhgQr8kS402VEvKeEY_v0L3folT_qlM1VwwrrXIFNsoF31KuUnPj6HErm6wmxtsdoN9dIM1OenTYRnPKf96nwG-ASmsbcV4cPf_Zf8CejrA9w</recordid><startdate>20171219</startdate><enddate>20171219</enddate><creator>Tamura, Makoto</creator><creator>Spellman, Timothy J.</creator><creator>Rosen, Andrew M.</creator><creator>Gogos, Joseph A.</creator><creator>Gordon, Joshua A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7491-4476</orcidid><orcidid>https://orcid.org/0000-0001-7034-8094</orcidid></search><sort><creationdate>20171219</creationdate><title>Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task</title><author>Tamura, Makoto ; Spellman, Timothy J. ; Rosen, Andrew M. ; Gogos, Joseph A. ; Gordon, Joshua A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/378/1595/3922</topic><topic>631/378/1689/1799</topic><topic>631/378/2649/2150</topic><topic>631/378/3920</topic><topic>Animal memory</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - diagnosis</topic><topic>Cognitive Dysfunction - physiopathology</topic><topic>Cortical Synchronization - physiology</topic><topic>Coupling</topic><topic>Disease Models, Animal</topic><topic>Electrodes</topic><topic>Female</topic><topic>Gamma Rhythm - physiology</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Male</topic><topic>Memory, Short-Term - physiology</topic><topic>Mental task performance</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>Neural Pathways - physiology</topic><topic>Neurons - physiology</topic><topic>Optogenetics</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - cytology</topic><topic>Prefrontal Cortex - physiology</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Short term memory</topic><topic>Spatial memory</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Theta Rhythm - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamura, Makoto</creatorcontrib><creatorcontrib>Spellman, Timothy J.</creatorcontrib><creatorcontrib>Rosen, Andrew M.</creatorcontrib><creatorcontrib>Gogos, Joseph A.</creatorcontrib><creatorcontrib>Gordon, Joshua A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamura, Makoto</au><au>Spellman, Timothy J.</au><au>Rosen, Andrew M.</au><au>Gogos, Joseph A.</au><au>Gordon, Joshua A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2017-12-19</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>2182</spage><epage>9</epage><pages>2182-9</pages><artnum>2182</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta–slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta–gamma coupling during correct trials. Finally, epochs of high hippocampal theta–prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta–slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty.
Theta- and gamma-frequency oscillatory synchrony correlates with spatial working memory performance. Here the authors report increases in theta-gamma cross-frequency coupling as a compensatory mechism associated with better working memory performance in models of cognitive dysfunction in mice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29259151</pmid><doi>10.1038/s41467-017-02108-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7491-4476</orcidid><orcidid>https://orcid.org/0000-0001-7034-8094</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2017-12, Vol.8 (1), p.2182-9, Article 2182 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0a4e40e9395942198e3c246bdf143b55 |
source | PubMed Central Free; Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/378/1595/3922 631/378/1689/1799 631/378/2649/2150 631/378/3920 Animal memory Animals Brain Brain architecture Cognitive ability Cognitive Dysfunction - diagnosis Cognitive Dysfunction - physiopathology Cortical Synchronization - physiology Coupling Disease Models, Animal Electrodes Female Gamma Rhythm - physiology Hippocampus Hippocampus - cytology Hippocampus - physiology Humanities and Social Sciences Humans Male Memory, Short-Term - physiology Mental task performance Mice Mice, Inbred C57BL multidisciplinary Neural Pathways - physiology Neurons - physiology Optogenetics Prefrontal cortex Prefrontal Cortex - cytology Prefrontal Cortex - physiology Rodents Science Science (multidisciplinary) Short term memory Spatial memory Synchronism Synchronization Theta Rhythm - physiology |
title | Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hippocampal-prefrontal%20theta-gamma%20coupling%20during%20performance%20of%20a%20spatial%20working%20memory%20task&rft.jtitle=Nature%20communications&rft.au=Tamura,%20Makoto&rft.date=2017-12-19&rft.volume=8&rft.issue=1&rft.spage=2182&rft.epage=9&rft.pages=2182-9&rft.artnum=2182&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-017-02108-9&rft_dat=%3Cproquest_doaj_%3E1983423774%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1983423774&rft_id=info:pmid/29259151&rfr_iscdi=true |