Loading…

Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task

Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta–slow gamma cou...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2017-12, Vol.8 (1), p.2182-9, Article 2182
Main Authors: Tamura, Makoto, Spellman, Timothy J., Rosen, Andrew M., Gogos, Joseph A., Gordon, Joshua A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003
cites cdi_FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003
container_end_page 9
container_issue 1
container_start_page 2182
container_title Nature communications
container_volume 8
creator Tamura, Makoto
Spellman, Timothy J.
Rosen, Andrew M.
Gogos, Joseph A.
Gordon, Joshua A.
description Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta–slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta–gamma coupling during correct trials. Finally, epochs of high hippocampal theta–prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta–slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty. Theta- and gamma-frequency oscillatory synchrony correlates with spatial working memory performance. Here the authors report increases in theta-gamma cross-frequency coupling as a compensatory mechism associated with better working memory performance in models of cognitive dysfunction in mice.
doi_str_mv 10.1038/s41467-017-02108-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a4e40e9395942198e3c246bdf143b55</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0a4e40e9395942198e3c246bdf143b55</doaj_id><sourcerecordid>1983423774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003</originalsourceid><addsrcrecordid>eNp1kstq3TAQhk1paUKaF-iiGLrpxo3usjaFEpoLBLrJXozl8YlPbEuV7Ja8feU4DSeBCsQI6ZtfGs1fFB8p-UoJr8-SoELpitA8GSV1Zd4Ux4wIWlHN-NuD9VFxmtKe5MENrYV4Xxwxw6Shkh4X9qoPwTsYAwxViNhFP80wlPMdzlDtYByhdH4JQz_tynaJawgYOx9HmByWviuhTAHmPif98fF-BUYcfXwoZ0j3H4p3HQwJT5_iSXF78eP2_Kq6-Xl5ff79pnKKqLmSTIquZsJpQGBtp6QCx1nLHCeEyU6hdAaJlqpzxBGBLYJsDDQtqLWwk-J6k2097G2I_QjxwXro7eOGjzsLce7dgJaAQEHQcCONYNTUyB0Tqmk7KngjZdb6tmmFpRmxdTjNEYYXoi9Ppv7O7vxvKzVXitRZ4MuTQPS_FkyzHfvkcBhgQr8kS402VEvKeEY_v0L3folT_qlM1VwwrrXIFNsoF31KuUnPj6HErm6wmxtsdoN9dIM1OenTYRnPKf96nwG-ASmsbcV4cPf_Zf8CejrA9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983423774</pqid></control><display><type>article</type><title>Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task</title><source>PubMed Central Free</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tamura, Makoto ; Spellman, Timothy J. ; Rosen, Andrew M. ; Gogos, Joseph A. ; Gordon, Joshua A.</creator><creatorcontrib>Tamura, Makoto ; Spellman, Timothy J. ; Rosen, Andrew M. ; Gogos, Joseph A. ; Gordon, Joshua A.</creatorcontrib><description>Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta–slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta–gamma coupling during correct trials. Finally, epochs of high hippocampal theta–prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta–slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty. Theta- and gamma-frequency oscillatory synchrony correlates with spatial working memory performance. Here the authors report increases in theta-gamma cross-frequency coupling as a compensatory mechism associated with better working memory performance in models of cognitive dysfunction in mice.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-017-02108-9</identifier><identifier>PMID: 29259151</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1595/3922 ; 631/378/1689/1799 ; 631/378/2649/2150 ; 631/378/3920 ; Animal memory ; Animals ; Brain ; Brain architecture ; Cognitive ability ; Cognitive Dysfunction - diagnosis ; Cognitive Dysfunction - physiopathology ; Cortical Synchronization - physiology ; Coupling ; Disease Models, Animal ; Electrodes ; Female ; Gamma Rhythm - physiology ; Hippocampus ; Hippocampus - cytology ; Hippocampus - physiology ; Humanities and Social Sciences ; Humans ; Male ; Memory, Short-Term - physiology ; Mental task performance ; Mice ; Mice, Inbred C57BL ; multidisciplinary ; Neural Pathways - physiology ; Neurons - physiology ; Optogenetics ; Prefrontal cortex ; Prefrontal Cortex - cytology ; Prefrontal Cortex - physiology ; Rodents ; Science ; Science (multidisciplinary) ; Short term memory ; Spatial memory ; Synchronism ; Synchronization ; Theta Rhythm - physiology</subject><ispartof>Nature communications, 2017-12, Vol.8 (1), p.2182-9, Article 2182</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003</citedby><cites>FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003</cites><orcidid>0000-0002-7491-4476 ; 0000-0001-7034-8094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1983423774/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1983423774?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29259151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamura, Makoto</creatorcontrib><creatorcontrib>Spellman, Timothy J.</creatorcontrib><creatorcontrib>Rosen, Andrew M.</creatorcontrib><creatorcontrib>Gogos, Joseph A.</creatorcontrib><creatorcontrib>Gordon, Joshua A.</creatorcontrib><title>Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta–slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta–gamma coupling during correct trials. Finally, epochs of high hippocampal theta–prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta–slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty. Theta- and gamma-frequency oscillatory synchrony correlates with spatial working memory performance. Here the authors report increases in theta-gamma cross-frequency coupling as a compensatory mechism associated with better working memory performance in models of cognitive dysfunction in mice.</description><subject>631/378/1595/3922</subject><subject>631/378/1689/1799</subject><subject>631/378/2649/2150</subject><subject>631/378/3920</subject><subject>Animal memory</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - diagnosis</subject><subject>Cognitive Dysfunction - physiopathology</subject><subject>Cortical Synchronization - physiology</subject><subject>Coupling</subject><subject>Disease Models, Animal</subject><subject>Electrodes</subject><subject>Female</subject><subject>Gamma Rhythm - physiology</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Male</subject><subject>Memory, Short-Term - physiology</subject><subject>Mental task performance</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>Neural Pathways - physiology</subject><subject>Neurons - physiology</subject><subject>Optogenetics</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - cytology</subject><subject>Prefrontal Cortex - physiology</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Short term memory</subject><subject>Spatial memory</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Theta Rhythm - physiology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kstq3TAQhk1paUKaF-iiGLrpxo3usjaFEpoLBLrJXozl8YlPbEuV7Ja8feU4DSeBCsQI6ZtfGs1fFB8p-UoJr8-SoELpitA8GSV1Zd4Ux4wIWlHN-NuD9VFxmtKe5MENrYV4Xxwxw6Shkh4X9qoPwTsYAwxViNhFP80wlPMdzlDtYByhdH4JQz_tynaJawgYOx9HmByWviuhTAHmPif98fF-BUYcfXwoZ0j3H4p3HQwJT5_iSXF78eP2_Kq6-Xl5ff79pnKKqLmSTIquZsJpQGBtp6QCx1nLHCeEyU6hdAaJlqpzxBGBLYJsDDQtqLWwk-J6k2097G2I_QjxwXro7eOGjzsLce7dgJaAQEHQcCONYNTUyB0Tqmk7KngjZdb6tmmFpRmxdTjNEYYXoi9Ppv7O7vxvKzVXitRZ4MuTQPS_FkyzHfvkcBhgQr8kS402VEvKeEY_v0L3folT_qlM1VwwrrXIFNsoF31KuUnPj6HErm6wmxtsdoN9dIM1OenTYRnPKf96nwG-ASmsbcV4cPf_Zf8CejrA9w</recordid><startdate>20171219</startdate><enddate>20171219</enddate><creator>Tamura, Makoto</creator><creator>Spellman, Timothy J.</creator><creator>Rosen, Andrew M.</creator><creator>Gogos, Joseph A.</creator><creator>Gordon, Joshua A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7491-4476</orcidid><orcidid>https://orcid.org/0000-0001-7034-8094</orcidid></search><sort><creationdate>20171219</creationdate><title>Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task</title><author>Tamura, Makoto ; Spellman, Timothy J. ; Rosen, Andrew M. ; Gogos, Joseph A. ; Gordon, Joshua A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/378/1595/3922</topic><topic>631/378/1689/1799</topic><topic>631/378/2649/2150</topic><topic>631/378/3920</topic><topic>Animal memory</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - diagnosis</topic><topic>Cognitive Dysfunction - physiopathology</topic><topic>Cortical Synchronization - physiology</topic><topic>Coupling</topic><topic>Disease Models, Animal</topic><topic>Electrodes</topic><topic>Female</topic><topic>Gamma Rhythm - physiology</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Male</topic><topic>Memory, Short-Term - physiology</topic><topic>Mental task performance</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>Neural Pathways - physiology</topic><topic>Neurons - physiology</topic><topic>Optogenetics</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - cytology</topic><topic>Prefrontal Cortex - physiology</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Short term memory</topic><topic>Spatial memory</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Theta Rhythm - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamura, Makoto</creatorcontrib><creatorcontrib>Spellman, Timothy J.</creatorcontrib><creatorcontrib>Rosen, Andrew M.</creatorcontrib><creatorcontrib>Gogos, Joseph A.</creatorcontrib><creatorcontrib>Gordon, Joshua A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamura, Makoto</au><au>Spellman, Timothy J.</au><au>Rosen, Andrew M.</au><au>Gogos, Joseph A.</au><au>Gordon, Joshua A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2017-12-19</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>2182</spage><epage>9</epage><pages>2182-9</pages><artnum>2182</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta–slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta–gamma coupling during correct trials. Finally, epochs of high hippocampal theta–prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta–slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty. Theta- and gamma-frequency oscillatory synchrony correlates with spatial working memory performance. Here the authors report increases in theta-gamma cross-frequency coupling as a compensatory mechism associated with better working memory performance in models of cognitive dysfunction in mice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29259151</pmid><doi>10.1038/s41467-017-02108-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7491-4476</orcidid><orcidid>https://orcid.org/0000-0001-7034-8094</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2017-12, Vol.8 (1), p.2182-9, Article 2182
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0a4e40e9395942198e3c246bdf143b55
source PubMed Central Free; Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 631/378/1595/3922
631/378/1689/1799
631/378/2649/2150
631/378/3920
Animal memory
Animals
Brain
Brain architecture
Cognitive ability
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - physiopathology
Cortical Synchronization - physiology
Coupling
Disease Models, Animal
Electrodes
Female
Gamma Rhythm - physiology
Hippocampus
Hippocampus - cytology
Hippocampus - physiology
Humanities and Social Sciences
Humans
Male
Memory, Short-Term - physiology
Mental task performance
Mice
Mice, Inbred C57BL
multidisciplinary
Neural Pathways - physiology
Neurons - physiology
Optogenetics
Prefrontal cortex
Prefrontal Cortex - cytology
Prefrontal Cortex - physiology
Rodents
Science
Science (multidisciplinary)
Short term memory
Spatial memory
Synchronism
Synchronization
Theta Rhythm - physiology
title Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hippocampal-prefrontal%20theta-gamma%20coupling%20during%20performance%20of%20a%20spatial%20working%20memory%20task&rft.jtitle=Nature%20communications&rft.au=Tamura,%20Makoto&rft.date=2017-12-19&rft.volume=8&rft.issue=1&rft.spage=2182&rft.epage=9&rft.pages=2182-9&rft.artnum=2182&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-017-02108-9&rft_dat=%3Cproquest_doaj_%3E1983423774%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-5254f824c7aea2df656ac32d2c30025f6e5c9e0756fc0c04edea5b9abda60003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1983423774&rft_id=info:pmid/29259151&rfr_iscdi=true