Loading…
Numerical simulation and performances evaluation of the pulse detonation engine
A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustor between each detonation wave. Theoretically, a PDE can operate from subsonic up to hypersonic...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333 |
container_end_page | |
container_issue | |
container_start_page | 1001 |
container_title | |
container_volume | 234 |
creator | Prisacariu, Vasile Rotaru, Constantin Cîrciu, Ionică Niculescu, Mihai |
description | A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustor between each detonation wave. Theoretically, a PDE can operate from subsonic up to hypersonic flight speed. Pulsed detonation engines offer many advantages over conventional propulsion systems and are regarded as potential replacements for air breathing and rocket propulsion systems, for platforms ranging from subsonic unmanned vehicles, long range transports, high-speed vehicles, space launchers to space vehicles. The article highlights elements of the current state of the art, but also theoretical and numerical aspects of these types of unconventional engines. This paper presents a numerical simulation of a PDE at
h
=10000 m with methane as working fluid for stoichiometric combustion, in order to find out the detonation conditions. |
doi_str_mv | 10.1051/matecconf/201823401001 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a5143150cc44c2e97101600fbca53bc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0a5143150cc44c2e97101600fbca53bc</doaj_id><sourcerecordid>2488001852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333</originalsourceid><addsrcrecordid>eNpNkVtLw0AQhYMoWGr_ggR8jp29JZtHKV4Kxb4o-LZsJpOakmTjJhH8965GpE8zzPk4M8yJomsGtwwUW7d2JETXVWsOTHMhgQGws2jBecoSLtK385P-MloNwxECIfIM8mwR7Z-nlnyNtomHup0aO9aui21Xxj35yvnWdkhDTJ-2mWbNVfH4TnE_NQPFJY2um-fUHeqOrqKLygZl9VeX0evD_cvmKdntH7ebu12CYfOYWJ2TpCzFtChRplAAR60xRyG4FjqXgBiIQilbZIznyJTMATIoFYkAiWW0nX1LZ4-m93Vr_Zdxtja_A-cPxvqxxoYMWMWkYCpYSomc8owBSwGqAq0SBQavm9mr9-5jomE0Rzf5LpxvuNQ6fEsrHqh0ptC7YfBU_W9lYH6yMP9ZmNMsxDd4UX6n</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2488001852</pqid></control><display><type>conference_proceeding</type><title>Numerical simulation and performances evaluation of the pulse detonation engine</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Prisacariu, Vasile ; Rotaru, Constantin ; Cîrciu, Ionică ; Niculescu, Mihai</creator><contributor>Todorov, M. ; Stoilov, V. ; Gigov, B. ; Nikolov, N. ; Kralov, I. ; Stoilova, S.</contributor><creatorcontrib>Prisacariu, Vasile ; Rotaru, Constantin ; Cîrciu, Ionică ; Niculescu, Mihai ; Todorov, M. ; Stoilov, V. ; Gigov, B. ; Nikolov, N. ; Kralov, I. ; Stoilova, S.</creatorcontrib><description>A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustor between each detonation wave. Theoretically, a PDE can operate from subsonic up to hypersonic flight speed. Pulsed detonation engines offer many advantages over conventional propulsion systems and are regarded as potential replacements for air breathing and rocket propulsion systems, for platforms ranging from subsonic unmanned vehicles, long range transports, high-speed vehicles, space launchers to space vehicles. The article highlights elements of the current state of the art, but also theoretical and numerical aspects of these types of unconventional engines. This paper presents a numerical simulation of a PDE at
h
=10000 m with methane as working fluid for stoichiometric combustion, in order to find out the detonation conditions.</description><identifier>ISSN: 2261-236X</identifier><identifier>ISSN: 2274-7214</identifier><identifier>EISSN: 2261-236X</identifier><identifier>DOI: 10.1051/matecconf/201823401001</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Airspeed ; Combustion chambers ; Detonation waves ; Hypersonic flight ; Oxidizing agents ; Propulsion systems ; Pulsed detonation wave engines ; Rocket engines ; Rocket propulsion ; Space vehicles ; Subsonic aircraft ; Unmanned vehicles ; Working fluids</subject><ispartof>MATEC web of conferences, 2018, Vol.234, p.1001</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333</citedby><cites>FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2488001852?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Todorov, M.</contributor><contributor>Stoilov, V.</contributor><contributor>Gigov, B.</contributor><contributor>Nikolov, N.</contributor><contributor>Kralov, I.</contributor><contributor>Stoilova, S.</contributor><creatorcontrib>Prisacariu, Vasile</creatorcontrib><creatorcontrib>Rotaru, Constantin</creatorcontrib><creatorcontrib>Cîrciu, Ionică</creatorcontrib><creatorcontrib>Niculescu, Mihai</creatorcontrib><title>Numerical simulation and performances evaluation of the pulse detonation engine</title><title>MATEC web of conferences</title><description>A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustor between each detonation wave. Theoretically, a PDE can operate from subsonic up to hypersonic flight speed. Pulsed detonation engines offer many advantages over conventional propulsion systems and are regarded as potential replacements for air breathing and rocket propulsion systems, for platforms ranging from subsonic unmanned vehicles, long range transports, high-speed vehicles, space launchers to space vehicles. The article highlights elements of the current state of the art, but also theoretical and numerical aspects of these types of unconventional engines. This paper presents a numerical simulation of a PDE at
h
=10000 m with methane as working fluid for stoichiometric combustion, in order to find out the detonation conditions.</description><subject>Airspeed</subject><subject>Combustion chambers</subject><subject>Detonation waves</subject><subject>Hypersonic flight</subject><subject>Oxidizing agents</subject><subject>Propulsion systems</subject><subject>Pulsed detonation wave engines</subject><subject>Rocket engines</subject><subject>Rocket propulsion</subject><subject>Space vehicles</subject><subject>Subsonic aircraft</subject><subject>Unmanned vehicles</subject><subject>Working fluids</subject><issn>2261-236X</issn><issn>2274-7214</issn><issn>2261-236X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLw0AQhYMoWGr_ggR8jp29JZtHKV4Kxb4o-LZsJpOakmTjJhH8965GpE8zzPk4M8yJomsGtwwUW7d2JETXVWsOTHMhgQGws2jBecoSLtK385P-MloNwxECIfIM8mwR7Z-nlnyNtomHup0aO9aui21Xxj35yvnWdkhDTJ-2mWbNVfH4TnE_NQPFJY2um-fUHeqOrqKLygZl9VeX0evD_cvmKdntH7ebu12CYfOYWJ2TpCzFtChRplAAR60xRyG4FjqXgBiIQilbZIznyJTMATIoFYkAiWW0nX1LZ4-m93Vr_Zdxtja_A-cPxvqxxoYMWMWkYCpYSomc8owBSwGqAq0SBQavm9mr9-5jomE0Rzf5LpxvuNQ6fEsrHqh0ptC7YfBU_W9lYH6yMP9ZmNMsxDd4UX6n</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Prisacariu, Vasile</creator><creator>Rotaru, Constantin</creator><creator>Cîrciu, Ionică</creator><creator>Niculescu, Mihai</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>Numerical simulation and performances evaluation of the pulse detonation engine</title><author>Prisacariu, Vasile ; Rotaru, Constantin ; Cîrciu, Ionică ; Niculescu, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Airspeed</topic><topic>Combustion chambers</topic><topic>Detonation waves</topic><topic>Hypersonic flight</topic><topic>Oxidizing agents</topic><topic>Propulsion systems</topic><topic>Pulsed detonation wave engines</topic><topic>Rocket engines</topic><topic>Rocket propulsion</topic><topic>Space vehicles</topic><topic>Subsonic aircraft</topic><topic>Unmanned vehicles</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prisacariu, Vasile</creatorcontrib><creatorcontrib>Rotaru, Constantin</creatorcontrib><creatorcontrib>Cîrciu, Ionică</creatorcontrib><creatorcontrib>Niculescu, Mihai</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prisacariu, Vasile</au><au>Rotaru, Constantin</au><au>Cîrciu, Ionică</au><au>Niculescu, Mihai</au><au>Todorov, M.</au><au>Stoilov, V.</au><au>Gigov, B.</au><au>Nikolov, N.</au><au>Kralov, I.</au><au>Stoilova, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical simulation and performances evaluation of the pulse detonation engine</atitle><btitle>MATEC web of conferences</btitle><date>2018-01-01</date><risdate>2018</risdate><volume>234</volume><spage>1001</spage><pages>1001-</pages><issn>2261-236X</issn><issn>2274-7214</issn><eissn>2261-236X</eissn><abstract>A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustor between each detonation wave. Theoretically, a PDE can operate from subsonic up to hypersonic flight speed. Pulsed detonation engines offer many advantages over conventional propulsion systems and are regarded as potential replacements for air breathing and rocket propulsion systems, for platforms ranging from subsonic unmanned vehicles, long range transports, high-speed vehicles, space launchers to space vehicles. The article highlights elements of the current state of the art, but also theoretical and numerical aspects of these types of unconventional engines. This paper presents a numerical simulation of a PDE at
h
=10000 m with methane as working fluid for stoichiometric combustion, in order to find out the detonation conditions.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/matecconf/201823401001</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2261-236X |
ispartof | MATEC web of conferences, 2018, Vol.234, p.1001 |
issn | 2261-236X 2274-7214 2261-236X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0a5143150cc44c2e97101600fbca53bc |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Airspeed Combustion chambers Detonation waves Hypersonic flight Oxidizing agents Propulsion systems Pulsed detonation wave engines Rocket engines Rocket propulsion Space vehicles Subsonic aircraft Unmanned vehicles Working fluids |
title | Numerical simulation and performances evaluation of the pulse detonation engine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20simulation%20and%20performances%20evaluation%20of%20the%20pulse%20detonation%20engine&rft.btitle=MATEC%20web%20of%20conferences&rft.au=Prisacariu,%20Vasile&rft.date=2018-01-01&rft.volume=234&rft.spage=1001&rft.pages=1001-&rft.issn=2261-236X&rft.eissn=2261-236X&rft_id=info:doi/10.1051/matecconf/201823401001&rft_dat=%3Cproquest_doaj_%3E2488001852%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488001852&rft_id=info:pmid/&rfr_iscdi=true |