Loading…

Numerical simulation and performances evaluation of the pulse detonation engine

A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustor between each detonation wave. Theoretically, a PDE can operate from subsonic up to hypersonic...

Full description

Saved in:
Bibliographic Details
Main Authors: Prisacariu, Vasile, Rotaru, Constantin, Cîrciu, Ionică, Niculescu, Mihai
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333
cites cdi_FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333
container_end_page
container_issue
container_start_page 1001
container_title
container_volume 234
creator Prisacariu, Vasile
Rotaru, Constantin
Cîrciu, Ionică
Niculescu, Mihai
description A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustor between each detonation wave. Theoretically, a PDE can operate from subsonic up to hypersonic flight speed. Pulsed detonation engines offer many advantages over conventional propulsion systems and are regarded as potential replacements for air breathing and rocket propulsion systems, for platforms ranging from subsonic unmanned vehicles, long range transports, high-speed vehicles, space launchers to space vehicles. The article highlights elements of the current state of the art, but also theoretical and numerical aspects of these types of unconventional engines. This paper presents a numerical simulation of a PDE at h =10000 m with methane as working fluid for stoichiometric combustion, in order to find out the detonation conditions.
doi_str_mv 10.1051/matecconf/201823401001
format conference_proceeding
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a5143150cc44c2e97101600fbca53bc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0a5143150cc44c2e97101600fbca53bc</doaj_id><sourcerecordid>2488001852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333</originalsourceid><addsrcrecordid>eNpNkVtLw0AQhYMoWGr_ggR8jp29JZtHKV4Kxb4o-LZsJpOakmTjJhH8965GpE8zzPk4M8yJomsGtwwUW7d2JETXVWsOTHMhgQGws2jBecoSLtK385P-MloNwxECIfIM8mwR7Z-nlnyNtomHup0aO9aui21Xxj35yvnWdkhDTJ-2mWbNVfH4TnE_NQPFJY2um-fUHeqOrqKLygZl9VeX0evD_cvmKdntH7ebu12CYfOYWJ2TpCzFtChRplAAR60xRyG4FjqXgBiIQilbZIznyJTMATIoFYkAiWW0nX1LZ4-m93Vr_Zdxtja_A-cPxvqxxoYMWMWkYCpYSomc8owBSwGqAq0SBQavm9mr9-5jomE0Rzf5LpxvuNQ6fEsrHqh0ptC7YfBU_W9lYH6yMP9ZmNMsxDd4UX6n</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2488001852</pqid></control><display><type>conference_proceeding</type><title>Numerical simulation and performances evaluation of the pulse detonation engine</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Prisacariu, Vasile ; Rotaru, Constantin ; Cîrciu, Ionică ; Niculescu, Mihai</creator><contributor>Todorov, M. ; Stoilov, V. ; Gigov, B. ; Nikolov, N. ; Kralov, I. ; Stoilova, S.</contributor><creatorcontrib>Prisacariu, Vasile ; Rotaru, Constantin ; Cîrciu, Ionică ; Niculescu, Mihai ; Todorov, M. ; Stoilov, V. ; Gigov, B. ; Nikolov, N. ; Kralov, I. ; Stoilova, S.</creatorcontrib><description>A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustor between each detonation wave. Theoretically, a PDE can operate from subsonic up to hypersonic flight speed. Pulsed detonation engines offer many advantages over conventional propulsion systems and are regarded as potential replacements for air breathing and rocket propulsion systems, for platforms ranging from subsonic unmanned vehicles, long range transports, high-speed vehicles, space launchers to space vehicles. The article highlights elements of the current state of the art, but also theoretical and numerical aspects of these types of unconventional engines. This paper presents a numerical simulation of a PDE at h =10000 m with methane as working fluid for stoichiometric combustion, in order to find out the detonation conditions.</description><identifier>ISSN: 2261-236X</identifier><identifier>ISSN: 2274-7214</identifier><identifier>EISSN: 2261-236X</identifier><identifier>DOI: 10.1051/matecconf/201823401001</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Airspeed ; Combustion chambers ; Detonation waves ; Hypersonic flight ; Oxidizing agents ; Propulsion systems ; Pulsed detonation wave engines ; Rocket engines ; Rocket propulsion ; Space vehicles ; Subsonic aircraft ; Unmanned vehicles ; Working fluids</subject><ispartof>MATEC web of conferences, 2018, Vol.234, p.1001</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333</citedby><cites>FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2488001852?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Todorov, M.</contributor><contributor>Stoilov, V.</contributor><contributor>Gigov, B.</contributor><contributor>Nikolov, N.</contributor><contributor>Kralov, I.</contributor><contributor>Stoilova, S.</contributor><creatorcontrib>Prisacariu, Vasile</creatorcontrib><creatorcontrib>Rotaru, Constantin</creatorcontrib><creatorcontrib>Cîrciu, Ionică</creatorcontrib><creatorcontrib>Niculescu, Mihai</creatorcontrib><title>Numerical simulation and performances evaluation of the pulse detonation engine</title><title>MATEC web of conferences</title><description>A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustor between each detonation wave. Theoretically, a PDE can operate from subsonic up to hypersonic flight speed. Pulsed detonation engines offer many advantages over conventional propulsion systems and are regarded as potential replacements for air breathing and rocket propulsion systems, for platforms ranging from subsonic unmanned vehicles, long range transports, high-speed vehicles, space launchers to space vehicles. The article highlights elements of the current state of the art, but also theoretical and numerical aspects of these types of unconventional engines. This paper presents a numerical simulation of a PDE at h =10000 m with methane as working fluid for stoichiometric combustion, in order to find out the detonation conditions.</description><subject>Airspeed</subject><subject>Combustion chambers</subject><subject>Detonation waves</subject><subject>Hypersonic flight</subject><subject>Oxidizing agents</subject><subject>Propulsion systems</subject><subject>Pulsed detonation wave engines</subject><subject>Rocket engines</subject><subject>Rocket propulsion</subject><subject>Space vehicles</subject><subject>Subsonic aircraft</subject><subject>Unmanned vehicles</subject><subject>Working fluids</subject><issn>2261-236X</issn><issn>2274-7214</issn><issn>2261-236X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLw0AQhYMoWGr_ggR8jp29JZtHKV4Kxb4o-LZsJpOakmTjJhH8965GpE8zzPk4M8yJomsGtwwUW7d2JETXVWsOTHMhgQGws2jBecoSLtK385P-MloNwxECIfIM8mwR7Z-nlnyNtomHup0aO9aui21Xxj35yvnWdkhDTJ-2mWbNVfH4TnE_NQPFJY2um-fUHeqOrqKLygZl9VeX0evD_cvmKdntH7ebu12CYfOYWJ2TpCzFtChRplAAR60xRyG4FjqXgBiIQilbZIznyJTMATIoFYkAiWW0nX1LZ4-m93Vr_Zdxtja_A-cPxvqxxoYMWMWkYCpYSomc8owBSwGqAq0SBQavm9mr9-5jomE0Rzf5LpxvuNQ6fEsrHqh0ptC7YfBU_W9lYH6yMP9ZmNMsxDd4UX6n</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Prisacariu, Vasile</creator><creator>Rotaru, Constantin</creator><creator>Cîrciu, Ionică</creator><creator>Niculescu, Mihai</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>Numerical simulation and performances evaluation of the pulse detonation engine</title><author>Prisacariu, Vasile ; Rotaru, Constantin ; Cîrciu, Ionică ; Niculescu, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Airspeed</topic><topic>Combustion chambers</topic><topic>Detonation waves</topic><topic>Hypersonic flight</topic><topic>Oxidizing agents</topic><topic>Propulsion systems</topic><topic>Pulsed detonation wave engines</topic><topic>Rocket engines</topic><topic>Rocket propulsion</topic><topic>Space vehicles</topic><topic>Subsonic aircraft</topic><topic>Unmanned vehicles</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prisacariu, Vasile</creatorcontrib><creatorcontrib>Rotaru, Constantin</creatorcontrib><creatorcontrib>Cîrciu, Ionică</creatorcontrib><creatorcontrib>Niculescu, Mihai</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prisacariu, Vasile</au><au>Rotaru, Constantin</au><au>Cîrciu, Ionică</au><au>Niculescu, Mihai</au><au>Todorov, M.</au><au>Stoilov, V.</au><au>Gigov, B.</au><au>Nikolov, N.</au><au>Kralov, I.</au><au>Stoilova, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical simulation and performances evaluation of the pulse detonation engine</atitle><btitle>MATEC web of conferences</btitle><date>2018-01-01</date><risdate>2018</risdate><volume>234</volume><spage>1001</spage><pages>1001-</pages><issn>2261-236X</issn><issn>2274-7214</issn><eissn>2261-236X</eissn><abstract>A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. The engine is pulsed because the mixture must be renewed in the combustor between each detonation wave. Theoretically, a PDE can operate from subsonic up to hypersonic flight speed. Pulsed detonation engines offer many advantages over conventional propulsion systems and are regarded as potential replacements for air breathing and rocket propulsion systems, for platforms ranging from subsonic unmanned vehicles, long range transports, high-speed vehicles, space launchers to space vehicles. The article highlights elements of the current state of the art, but also theoretical and numerical aspects of these types of unconventional engines. This paper presents a numerical simulation of a PDE at h =10000 m with methane as working fluid for stoichiometric combustion, in order to find out the detonation conditions.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/matecconf/201823401001</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2261-236X
ispartof MATEC web of conferences, 2018, Vol.234, p.1001
issn 2261-236X
2274-7214
2261-236X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0a5143150cc44c2e97101600fbca53bc
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Airspeed
Combustion chambers
Detonation waves
Hypersonic flight
Oxidizing agents
Propulsion systems
Pulsed detonation wave engines
Rocket engines
Rocket propulsion
Space vehicles
Subsonic aircraft
Unmanned vehicles
Working fluids
title Numerical simulation and performances evaluation of the pulse detonation engine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20simulation%20and%20performances%20evaluation%20of%20the%20pulse%20detonation%20engine&rft.btitle=MATEC%20web%20of%20conferences&rft.au=Prisacariu,%20Vasile&rft.date=2018-01-01&rft.volume=234&rft.spage=1001&rft.pages=1001-&rft.issn=2261-236X&rft.eissn=2261-236X&rft_id=info:doi/10.1051/matecconf/201823401001&rft_dat=%3Cproquest_doaj_%3E2488001852%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-a89e4e76c6bdc460b02c88c9c332838940cc9e4b55ab7129c15490070d5e3c333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488001852&rft_id=info:pmid/&rfr_iscdi=true