Loading…
Thermal explosion and irreversibility of hydromagnetic reactive couple stress fluid with viscous dissipation and Navier slips
The study examines the thermal explosion branched-chain and entropy generation as a result of irreversibility of hydromagnetic reactive couple stress liquid with viscous heating and Navier slips. The reactive fluid flow is enhanced by heat dependent pre-exponential factor and axial pressure gradient...
Saved in:
Published in: | Theoretical and applied mechanics letters 2019-07, Vol.9 (4), p.246-253 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The study examines the thermal explosion branched-chain and entropy generation as a result of irreversibility of hydromagnetic reactive couple stress liquid with viscous heating and Navier slips. The reactive fluid flow is enhanced by heat dependent pre-exponential factor and axial pressure gradient in a porous wall. The flow equations for the non-Newtonian couple stress fluid model and heat transfer are solved by employing a semi-analytical collocation weighted residual method (CWRM). The efficiency and validity of the obtained results was verified with the existing results. The results reveal that at low hysteresis magnetic and viscous dissipation the irreversibility process is minimized and thermodynamic equilibrium is improved. The results from this study can assist in understanding the relationship between thermal and thermal explosions branched-chain. |
---|---|
ISSN: | 2095-0349 |
DOI: | 10.1016/j.taml.2019.04.003 |