Loading…

A blueprint for robust crosslinking of mobile species in biogels with weakly adhesive molecular anchors

Biopolymeric matrices can impede transport of nanoparticulates and pathogens by entropic or direct adhesive interactions, or by harnessing “third-party” molecular anchors to crosslink nanoparticulates to matrix constituents. The trapping potency of anchors is dictated by association rates and affini...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2017-10, Vol.8 (1), p.833-10, Article 833
Main Authors: Newby, Jay, Schiller, Jennifer L., Wessler, Timothy, Edelstein, Jasmine, Forest, M. Gregory, Lai, Samuel K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-f7aaec9dd3bf38bbd7ba080f15a25da538e7cfaa9d56720762e9a7896b9b4aa73
cites cdi_FETCH-LOGICAL-c540t-f7aaec9dd3bf38bbd7ba080f15a25da538e7cfaa9d56720762e9a7896b9b4aa73
container_end_page 10
container_issue 1
container_start_page 833
container_title Nature communications
container_volume 8
creator Newby, Jay
Schiller, Jennifer L.
Wessler, Timothy
Edelstein, Jasmine
Forest, M. Gregory
Lai, Samuel K.
description Biopolymeric matrices can impede transport of nanoparticulates and pathogens by entropic or direct adhesive interactions, or by harnessing “third-party” molecular anchors to crosslink nanoparticulates to matrix constituents. The trapping potency of anchors is dictated by association rates and affinities to both nanoparticulates and matrix; the popular dogma is that long-lived, high-affinity bonds to both species facilitate optimal trapping. Here we present a contrasting paradigm combining experimental evidence (using IgG antibodies and Matrigel®), a theoretical framework (based on multiple timescale analysis), and computational modeling. Anchors that bind and unbind rapidly from matrix accumulate on nanoparticulates much more quickly than anchors that form high-affinity, long-lived bonds with matrix, leading to markedly greater trapping potency of multiple invading species without saturating matrix trapping capacity. Our results provide a blueprint for engineering molecular anchors with finely tuned affinities to effectively enhance the barrier properties of biogels against diverse nanoparticulate species. Biological polymeric matrices often use molecular anchors, such as antibodies, to trap nanoparticulates. Here, the authors find that anchor-matrix bonds that are weak and short-lived confer superior trapping potency, contrary to the prevailing belief that effective molecular anchors should form strong bonds to both the matrix and the nanoparticulates.
doi_str_mv 10.1038/s41467-017-00739-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0a8f61c054d7499c8cfd1b1294055ed1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0a8f61c054d7499c8cfd1b1294055ed1</doaj_id><sourcerecordid>1950181697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-f7aaec9dd3bf38bbd7ba080f15a25da538e7cfaa9d56720762e9a7896b9b4aa73</originalsourceid><addsrcrecordid>eNp1kl1rHCEUhofS0oQ0f6AXRehNb6bxa0a9KYTQj0CgN-21-HFm1o07bnUmIf--7m4SNoUK4kGf83qOvk3znuDPBDN5UTjhvWgxqRMLptr-VXNKMSctEZS9PopPmvNS1rgOpojk_G1zQhUmkjJ12oyXyMYFtjlMMxpSRjnZpczI5VRKDNNtmEaUBrRJNkRAZQsuQEFhQjakEWJB92FeoXswt_EBGb-CEu6g4hHcEk1GZnKrlMu75s1gYoHzx_Ws-f3t66-rH-3Nz-_XV5c3res4nttBGANOec_swKS1XliDJR5IZ2jnTcckCDcYo3zXC4pFT0EZIVVvleXGCHbWXB90fTJrXdvamPygkwl6v5HyqE2eg4ugsZFDTxzuuBdcKSfd4IklVHHcdeBJ1fpy0NoudgPewTRnE1-IvjyZwkqP6U53PeswoVXg06NATn8WKLPehOIgRjNBWoomqmKS9GpX98d_0HVa8lSfqlJcdZISySpFD9T-ezIMz8UQrHe20Adb6GoLvbeF7mvSh-M2nlOeTFABdgDKzgYj5KO7_y_7F09txQs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949582183</pqid></control><display><type>article</type><title>A blueprint for robust crosslinking of mobile species in biogels with weakly adhesive molecular anchors</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Newby, Jay ; Schiller, Jennifer L. ; Wessler, Timothy ; Edelstein, Jasmine ; Forest, M. Gregory ; Lai, Samuel K.</creator><creatorcontrib>Newby, Jay ; Schiller, Jennifer L. ; Wessler, Timothy ; Edelstein, Jasmine ; Forest, M. Gregory ; Lai, Samuel K.</creatorcontrib><description>Biopolymeric matrices can impede transport of nanoparticulates and pathogens by entropic or direct adhesive interactions, or by harnessing “third-party” molecular anchors to crosslink nanoparticulates to matrix constituents. The trapping potency of anchors is dictated by association rates and affinities to both nanoparticulates and matrix; the popular dogma is that long-lived, high-affinity bonds to both species facilitate optimal trapping. Here we present a contrasting paradigm combining experimental evidence (using IgG antibodies and Matrigel®), a theoretical framework (based on multiple timescale analysis), and computational modeling. Anchors that bind and unbind rapidly from matrix accumulate on nanoparticulates much more quickly than anchors that form high-affinity, long-lived bonds with matrix, leading to markedly greater trapping potency of multiple invading species without saturating matrix trapping capacity. Our results provide a blueprint for engineering molecular anchors with finely tuned affinities to effectively enhance the barrier properties of biogels against diverse nanoparticulate species. Biological polymeric matrices often use molecular anchors, such as antibodies, to trap nanoparticulates. Here, the authors find that anchor-matrix bonds that are weak and short-lived confer superior trapping potency, contrary to the prevailing belief that effective molecular anchors should form strong bonds to both the matrix and the nanoparticulates.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-017-00739-6</identifier><identifier>PMID: 29018239</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/2266 ; 631/57/2272/1590 ; 639/301/54/994 ; 639/925/357/354 ; Adhesive bonding ; Adhesives ; Affinity ; Antibodies ; Bonding strength ; Chemical bonds ; Computer applications ; Crosslinking ; Herpes viruses ; Humanities and Social Sciences ; Immunoglobulin G ; multidisciplinary ; Nanoparticles ; Pathogens ; Polyethylene glycol ; Science ; Science (multidisciplinary) ; Species ; Trapping ; Viscoelasticity ; Viscosity</subject><ispartof>Nature communications, 2017-10, Vol.8 (1), p.833-10, Article 833</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-f7aaec9dd3bf38bbd7ba080f15a25da538e7cfaa9d56720762e9a7896b9b4aa73</citedby><cites>FETCH-LOGICAL-c540t-f7aaec9dd3bf38bbd7ba080f15a25da538e7cfaa9d56720762e9a7896b9b4aa73</cites><orcidid>0000-0002-7718-4456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1949582183/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1949582183?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29018239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Newby, Jay</creatorcontrib><creatorcontrib>Schiller, Jennifer L.</creatorcontrib><creatorcontrib>Wessler, Timothy</creatorcontrib><creatorcontrib>Edelstein, Jasmine</creatorcontrib><creatorcontrib>Forest, M. Gregory</creatorcontrib><creatorcontrib>Lai, Samuel K.</creatorcontrib><title>A blueprint for robust crosslinking of mobile species in biogels with weakly adhesive molecular anchors</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Biopolymeric matrices can impede transport of nanoparticulates and pathogens by entropic or direct adhesive interactions, or by harnessing “third-party” molecular anchors to crosslink nanoparticulates to matrix constituents. The trapping potency of anchors is dictated by association rates and affinities to both nanoparticulates and matrix; the popular dogma is that long-lived, high-affinity bonds to both species facilitate optimal trapping. Here we present a contrasting paradigm combining experimental evidence (using IgG antibodies and Matrigel®), a theoretical framework (based on multiple timescale analysis), and computational modeling. Anchors that bind and unbind rapidly from matrix accumulate on nanoparticulates much more quickly than anchors that form high-affinity, long-lived bonds with matrix, leading to markedly greater trapping potency of multiple invading species without saturating matrix trapping capacity. Our results provide a blueprint for engineering molecular anchors with finely tuned affinities to effectively enhance the barrier properties of biogels against diverse nanoparticulate species. Biological polymeric matrices often use molecular anchors, such as antibodies, to trap nanoparticulates. Here, the authors find that anchor-matrix bonds that are weak and short-lived confer superior trapping potency, contrary to the prevailing belief that effective molecular anchors should form strong bonds to both the matrix and the nanoparticulates.</description><subject>631/57/2266</subject><subject>631/57/2272/1590</subject><subject>639/301/54/994</subject><subject>639/925/357/354</subject><subject>Adhesive bonding</subject><subject>Adhesives</subject><subject>Affinity</subject><subject>Antibodies</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Computer applications</subject><subject>Crosslinking</subject><subject>Herpes viruses</subject><subject>Humanities and Social Sciences</subject><subject>Immunoglobulin G</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Pathogens</subject><subject>Polyethylene glycol</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Species</subject><subject>Trapping</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kl1rHCEUhofS0oQ0f6AXRehNb6bxa0a9KYTQj0CgN-21-HFm1o07bnUmIf--7m4SNoUK4kGf83qOvk3znuDPBDN5UTjhvWgxqRMLptr-VXNKMSctEZS9PopPmvNS1rgOpojk_G1zQhUmkjJ12oyXyMYFtjlMMxpSRjnZpczI5VRKDNNtmEaUBrRJNkRAZQsuQEFhQjakEWJB92FeoXswt_EBGb-CEu6g4hHcEk1GZnKrlMu75s1gYoHzx_Ws-f3t66-rH-3Nz-_XV5c3res4nttBGANOec_swKS1XliDJR5IZ2jnTcckCDcYo3zXC4pFT0EZIVVvleXGCHbWXB90fTJrXdvamPygkwl6v5HyqE2eg4ugsZFDTxzuuBdcKSfd4IklVHHcdeBJ1fpy0NoudgPewTRnE1-IvjyZwkqP6U53PeswoVXg06NATn8WKLPehOIgRjNBWoomqmKS9GpX98d_0HVa8lSfqlJcdZISySpFD9T-ezIMz8UQrHe20Adb6GoLvbeF7mvSh-M2nlOeTFABdgDKzgYj5KO7_y_7F09txQs</recordid><startdate>20171010</startdate><enddate>20171010</enddate><creator>Newby, Jay</creator><creator>Schiller, Jennifer L.</creator><creator>Wessler, Timothy</creator><creator>Edelstein, Jasmine</creator><creator>Forest, M. Gregory</creator><creator>Lai, Samuel K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7718-4456</orcidid></search><sort><creationdate>20171010</creationdate><title>A blueprint for robust crosslinking of mobile species in biogels with weakly adhesive molecular anchors</title><author>Newby, Jay ; Schiller, Jennifer L. ; Wessler, Timothy ; Edelstein, Jasmine ; Forest, M. Gregory ; Lai, Samuel K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-f7aaec9dd3bf38bbd7ba080f15a25da538e7cfaa9d56720762e9a7896b9b4aa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/57/2266</topic><topic>631/57/2272/1590</topic><topic>639/301/54/994</topic><topic>639/925/357/354</topic><topic>Adhesive bonding</topic><topic>Adhesives</topic><topic>Affinity</topic><topic>Antibodies</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Computer applications</topic><topic>Crosslinking</topic><topic>Herpes viruses</topic><topic>Humanities and Social Sciences</topic><topic>Immunoglobulin G</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Pathogens</topic><topic>Polyethylene glycol</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Species</topic><topic>Trapping</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newby, Jay</creatorcontrib><creatorcontrib>Schiller, Jennifer L.</creatorcontrib><creatorcontrib>Wessler, Timothy</creatorcontrib><creatorcontrib>Edelstein, Jasmine</creatorcontrib><creatorcontrib>Forest, M. Gregory</creatorcontrib><creatorcontrib>Lai, Samuel K.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newby, Jay</au><au>Schiller, Jennifer L.</au><au>Wessler, Timothy</au><au>Edelstein, Jasmine</au><au>Forest, M. Gregory</au><au>Lai, Samuel K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A blueprint for robust crosslinking of mobile species in biogels with weakly adhesive molecular anchors</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2017-10-10</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>833</spage><epage>10</epage><pages>833-10</pages><artnum>833</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Biopolymeric matrices can impede transport of nanoparticulates and pathogens by entropic or direct adhesive interactions, or by harnessing “third-party” molecular anchors to crosslink nanoparticulates to matrix constituents. The trapping potency of anchors is dictated by association rates and affinities to both nanoparticulates and matrix; the popular dogma is that long-lived, high-affinity bonds to both species facilitate optimal trapping. Here we present a contrasting paradigm combining experimental evidence (using IgG antibodies and Matrigel®), a theoretical framework (based on multiple timescale analysis), and computational modeling. Anchors that bind and unbind rapidly from matrix accumulate on nanoparticulates much more quickly than anchors that form high-affinity, long-lived bonds with matrix, leading to markedly greater trapping potency of multiple invading species without saturating matrix trapping capacity. Our results provide a blueprint for engineering molecular anchors with finely tuned affinities to effectively enhance the barrier properties of biogels against diverse nanoparticulate species. Biological polymeric matrices often use molecular anchors, such as antibodies, to trap nanoparticulates. Here, the authors find that anchor-matrix bonds that are weak and short-lived confer superior trapping potency, contrary to the prevailing belief that effective molecular anchors should form strong bonds to both the matrix and the nanoparticulates.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29018239</pmid><doi>10.1038/s41467-017-00739-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7718-4456</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2017-10, Vol.8 (1), p.833-10, Article 833
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0a8f61c054d7499c8cfd1b1294055ed1
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/57/2266
631/57/2272/1590
639/301/54/994
639/925/357/354
Adhesive bonding
Adhesives
Affinity
Antibodies
Bonding strength
Chemical bonds
Computer applications
Crosslinking
Herpes viruses
Humanities and Social Sciences
Immunoglobulin G
multidisciplinary
Nanoparticles
Pathogens
Polyethylene glycol
Science
Science (multidisciplinary)
Species
Trapping
Viscoelasticity
Viscosity
title A blueprint for robust crosslinking of mobile species in biogels with weakly adhesive molecular anchors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20blueprint%20for%20robust%20crosslinking%20of%20mobile%20species%20in%20biogels%20with%20weakly%20adhesive%20molecular%20anchors&rft.jtitle=Nature%20communications&rft.au=Newby,%20Jay&rft.date=2017-10-10&rft.volume=8&rft.issue=1&rft.spage=833&rft.epage=10&rft.pages=833-10&rft.artnum=833&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-017-00739-6&rft_dat=%3Cproquest_doaj_%3E1950181697%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-f7aaec9dd3bf38bbd7ba080f15a25da538e7cfaa9d56720762e9a7896b9b4aa73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1949582183&rft_id=info:pmid/29018239&rfr_iscdi=true