Loading…

Thermal and Catalytic Pyrolysis of Urban Plastic Waste: Modified Mordenite and ZSM-5 Zeolites

Zeolites have been successfully applied as catalysts in the pyrolysis of plastics to obtain valuable lower molecular weight hydrocarbon compounds. In the present work, mordenite was directly synthesized and chemically modified from commercial mordenite to increase pore volume. For the first time, th...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry an international journal 2022-06, Vol.4 (2), p.297-315
Main Authors: Paula, Taihana Parente, Marques, Maria de Fatima Vieira, Marques, Mônica Regina da Costa, Oliveira, Michelle Souza, Monteiro, Sergio Neves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zeolites have been successfully applied as catalysts in the pyrolysis of plastics to obtain valuable lower molecular weight hydrocarbon compounds. In the present work, mordenite was directly synthesized and chemically modified from commercial mordenite to increase pore volume. For the first time, the performance of these mordenites was compared with that of an alkali-treated ZSM-5 as catalysts for assisting the pyrolysis of simulated urban plastic waste. The investigated zeolites were: (i) as-supplied synthetic ZSM-5 (ZSM-5/AS); (ii) 0.2 M NaOH treated ZSM-5 (ZSM-5/02); (iii) as-supplied mordenite (MOR/AS); (iv) 0.2 M NaOH treated mordenite (MOR/02); and (v) synthetic lab-developed mordenite (MOR/SD). The modified and synthesized zeolites were individually applied as catalysts in the 700 °C pyrolyzes of combined polyethylene, polypropylene, and polystyrene wastes in a mixture simulating most plastics found in Rio de Janeiro (Brazil) city garbage composition. X-ray diffraction revealed crystallite sizes of all zeolites in a nanometric range from 17 to 43 nm. Textural analysis disclosed the alkali-treated ZSM-5/02 with a superior external surface area, 153 m²/g, and mesopore volume equal to 0.253 cm3/g. Lower values were obtained by MOR/02 (39 m²/g and 0.072 cm3/g). The pyrolysis of the plastic mixture with ZSM-5/02 presented a lower initial degradation temperature, 387 °C, followed by MOR/02, with 417 °C. The ZSM-5/02 catalyst obtained the highest conversion in the pyrolysis of the plastic mixture, totaling 49.2%. However, pyrolysis assisted by the MOR/02 catalyst showed the largest fraction (81.5%) of light hydrocarbons.
ISSN:2624-8549
2624-8549
DOI:10.3390/chemistry4020023