Loading…

Chemical and Enzymatic Hydrolysis of Polyurethane/Polylactide Blends

Polyether-esterurethanes containing synthetic poly[(R,S)-3-hydroxybutyrate] (R,S-PHB) and polyoxytetramethylenediol in soft segments and polyesterurethanes with poly(ε-caprolactone) and poly[(R,S)-3-hydroxybutyrate] were blended with poly([D,L]-lactide) (PLA). The products were tested in terms of th...

Full description

Saved in:
Bibliographic Details
Published in:International journal of polymer science 2015-01, Vol.2015 (2015), p.1-8
Main Authors: Kowalczuk, Marek, Jasińska-Walc, Lidia, Sikorska, Wanda, Heimowska, Aleksandra, Brzeska, Joanna, Rutkowska, Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polyether-esterurethanes containing synthetic poly[(R,S)-3-hydroxybutyrate] (R,S-PHB) and polyoxytetramethylenediol in soft segments and polyesterurethanes with poly(ε-caprolactone) and poly[(R,S)-3-hydroxybutyrate] were blended with poly([D,L]-lactide) (PLA). The products were tested in terms of their oil and water absorption. Oil sorption tests of polyether-esterurethane revealed their higher response in comparison to polyesterurethanes. Blending of polyether-esterurethanes with PLA caused the increase of oil sorption. The highest water sorption was observed for blends of polyether-esterurethane, obtained with 10% of R,S-PHB in soft segments. The samples mass of polyurethanes and their blends were almost not changed after incubation in phosphate buffer and trypsin and lipase solutions. Nevertheless the molecular weight of polymers was significantly reduced after degradation. It was especially visible in case of incubation of samples in phosphate buffer what suggested the chemical hydrolysis of polymer chains. The changes of surface of polyurethanes and their blends, after incubation in both enzymatic solutions, indicated on enzymatic degradation, which had been started despite the lack of mass lost. Polyurethanes and their blends, contained more R,S-PHB in soft segments, were degraded faster.
ISSN:1687-9422
1687-9430
DOI:10.1155/2015/795985