Loading…
Investigation of constitutive relationship and dynamic recrystallization behavior of 22MnB5 during hot deformation
In order to analyze the softening behavior of 22MnB5 steel and further predict the constitutive relationship during hot sheet metal forming, a series of isothermal hot compression tests were conducted at the temperature range of 800–950 °C and strain rate range of 0.01–0.8 s−1 on BAEHR 805 A/D therm...
Saved in:
Published in: | Results in physics 2019-09, Vol.14, p.102426, Article 102426 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to analyze the softening behavior of 22MnB5 steel and further predict the constitutive relationship during hot sheet metal forming, a series of isothermal hot compression tests were conducted at the temperature range of 800–950 °C and strain rate range of 0.01–0.8 s−1 on BAEHR 805 A/D thermo-mechanical simulator system. Based on the friction corrected flow curves, the characteristic strain and stress of dynamic recrystallization (DRX) were derived from the Kocks-Mecking plots and expressed as a function of Zener-Hollomon parameter. Moreover, a physical constitutive model considering work hardening (WH), dynamic recovery (DRV) and DRX as well as corresponding JMAK-type DRX kinetics were developed. The results showed that the established physical equations can accurately predict the flow behavior with a correlation coefficient of 0.997 and average absolute relative error of 3.89%. Optical observation of the microstructure after hot compression revealed that the established DRX kinetics accurately reflects the reality, and then a Zener-Hollomon parameter dependent dynamic recrystallized grain size model was developed. Furthermore, EBSD analysis was carried out to study the effect of deformation conditions on martensite morphology and the results show that a lower temperature and higher strain rate lead to a finer martensite packet while the martensite block width becomes larger under the higher strain rate. Keywords: Constitutive model, Dynamic recrystallization, Martensite morphology |
---|---|
ISSN: | 2211-3797 2211-3797 |
DOI: | 10.1016/j.rinp.2019.102426 |