Loading…

Quantized spin Hall conductance in a magnetically doped two dimensional topological insulator

Soon after the discovery of the quantum spin Hall effect, it has been predicted that a magnetic impurity in the presence of strong Coulomb interactions will destroy the quantum spin Hall effect. However, the fate of the quantum spin Hall effect in the presence of magnetic impurities has not yet been...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-05, Vol.12 (1), p.3193-3193, Article 3193
Main Authors: Shamim, Saquib, Beugeling, Wouter, Shekhar, Pragya, Bendias, Kalle, Lunczer, Lukas, Kleinlein, Johannes, Buhmann, Hartmut, Molenkamp, Laurens W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-e4e1e620ad4649b8dda5fa2a921eb2ae4ac70cbaf1fdb74c32c920461cef13ac3
cites cdi_FETCH-LOGICAL-c517t-e4e1e620ad4649b8dda5fa2a921eb2ae4ac70cbaf1fdb74c32c920461cef13ac3
container_end_page 3193
container_issue 1
container_start_page 3193
container_title Nature communications
container_volume 12
creator Shamim, Saquib
Beugeling, Wouter
Shekhar, Pragya
Bendias, Kalle
Lunczer, Lukas
Kleinlein, Johannes
Buhmann, Hartmut
Molenkamp, Laurens W.
description Soon after the discovery of the quantum spin Hall effect, it has been predicted that a magnetic impurity in the presence of strong Coulomb interactions will destroy the quantum spin Hall effect. However, the fate of the quantum spin Hall effect in the presence of magnetic impurities has not yet been experimentally investigated. Here, we report the successful experimental demonstration of a quantized spin Hall resistance in HgTe quantum wells dilutely alloyed with magnetic Mn atoms. These quantum wells exhibit an inverted band structure that is very similar to that of the undoped material. Micron sized devices of (Hg,Mn)Te quantum well (in the topological phase) show a quantized spin Hall resistance of h /2 e 2 at low temperatures and zero magnetic field. At finite temperatures, we observe signatures of the Kondo effect due to interaction between the helical edge channels and magnetic impurities. Our work lays the foundation for future investigations of magnetically doped quantum spin Hall materials towards the realization of chiral Majorana fermions. The quantum spin Hall effect is expected not to survive the presence of magnetic impurities. Here, authors report full quantization at very low temperatures in HgTe quantum wells alloyed with a few percent of magnetic Mn atoms, due to Kondo screening.
doi_str_mv 10.1038/s41467-021-23262-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0ad6a021e1324eeea717ef9f729304a8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0ad6a021e1324eeea717ef9f729304a8</doaj_id><sourcerecordid>2534612976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-e4e1e620ad4649b8dda5fa2a921eb2ae4ac70cbaf1fdb74c32c920461cef13ac3</originalsourceid><addsrcrecordid>eNp9kkGL1TAQx4so7rLuF_BU8OKlu5kkbdqLIIu6Cwsi6FHCNJnWPtLkmbQu66c373VR14O5JMz8_v_MDFMUL4FdABPtZZIgG1UxDhUXvOEVPClOOZNQgeLi6V_vk-I8pR3LR3TQSvm8OBGSyVrWzWnx9dOKfpl-ki3TfvLlNTpXmuDtahb0hsocw3LG0dMymZy8L23YZ3q5C6WdZvJpCh5duYR9cGE8MFmTVodLiC-KZwO6ROcP91nx5f27z1fX1e3HDzdXb28rU4NaKpIE1HCGVjay61trsR6QY8eBeo4k0ShmehxgsL2SRnDT5fYaMDSAQCPOipvN1wbc6X2cZoz3OuCkj4EQR40x1-9I508azFMjEFwSESpQNHSD4p1gEtvs9Wbz2q_9TNaQXyK6R6aPM376psfwQ7fQMAZNNnj9YBDD95XSoucpGXIOPYU1aV6LXDrv1AF99Q-6C2vM4zxSgtW5SZUpvlEmhpQiDb-LAaYPy6C3ZdC5LX1cBg1ZJDZRyrAfKf6x_o_qF5M0t78</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533050467</pqid></control><display><type>article</type><title>Quantized spin Hall conductance in a magnetically doped two dimensional topological insulator</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shamim, Saquib ; Beugeling, Wouter ; Shekhar, Pragya ; Bendias, Kalle ; Lunczer, Lukas ; Kleinlein, Johannes ; Buhmann, Hartmut ; Molenkamp, Laurens W.</creator><creatorcontrib>Shamim, Saquib ; Beugeling, Wouter ; Shekhar, Pragya ; Bendias, Kalle ; Lunczer, Lukas ; Kleinlein, Johannes ; Buhmann, Hartmut ; Molenkamp, Laurens W.</creatorcontrib><description>Soon after the discovery of the quantum spin Hall effect, it has been predicted that a magnetic impurity in the presence of strong Coulomb interactions will destroy the quantum spin Hall effect. However, the fate of the quantum spin Hall effect in the presence of magnetic impurities has not yet been experimentally investigated. Here, we report the successful experimental demonstration of a quantized spin Hall resistance in HgTe quantum wells dilutely alloyed with magnetic Mn atoms. These quantum wells exhibit an inverted band structure that is very similar to that of the undoped material. Micron sized devices of (Hg,Mn)Te quantum well (in the topological phase) show a quantized spin Hall resistance of h /2 e 2 at low temperatures and zero magnetic field. At finite temperatures, we observe signatures of the Kondo effect due to interaction between the helical edge channels and magnetic impurities. Our work lays the foundation for future investigations of magnetically doped quantum spin Hall materials towards the realization of chiral Majorana fermions. The quantum spin Hall effect is expected not to survive the presence of magnetic impurities. Here, authors report full quantization at very low temperatures in HgTe quantum wells alloyed with a few percent of magnetic Mn atoms, due to Kondo screening.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-23262-1</identifier><identifier>PMID: 34045456</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2792/4128 ; 639/766/119/2794 ; Alloying ; Conductance ; Electromagnetism ; Electrons ; Fermions ; Humanities and Social Sciences ; Impurities ; Kondo effect ; Low temperature ; Low temperature resistance ; Magnetic fields ; Manganese ; Mercury (metal) ; multidisciplinary ; Quantum Hall effect ; Quantum wells ; Resistance ; Science ; Science (multidisciplinary) ; Topological insulators ; Wells</subject><ispartof>Nature communications, 2021-05, Vol.12 (1), p.3193-3193, Article 3193</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-e4e1e620ad4649b8dda5fa2a921eb2ae4ac70cbaf1fdb74c32c920461cef13ac3</citedby><cites>FETCH-LOGICAL-c517t-e4e1e620ad4649b8dda5fa2a921eb2ae4ac70cbaf1fdb74c32c920461cef13ac3</cites><orcidid>0000-0001-8687-7441 ; 0000-0002-3691-1821 ; 0000-0003-4833-5179 ; 0000-0001-5462-7923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2533050467/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2533050467?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Shamim, Saquib</creatorcontrib><creatorcontrib>Beugeling, Wouter</creatorcontrib><creatorcontrib>Shekhar, Pragya</creatorcontrib><creatorcontrib>Bendias, Kalle</creatorcontrib><creatorcontrib>Lunczer, Lukas</creatorcontrib><creatorcontrib>Kleinlein, Johannes</creatorcontrib><creatorcontrib>Buhmann, Hartmut</creatorcontrib><creatorcontrib>Molenkamp, Laurens W.</creatorcontrib><title>Quantized spin Hall conductance in a magnetically doped two dimensional topological insulator</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Soon after the discovery of the quantum spin Hall effect, it has been predicted that a magnetic impurity in the presence of strong Coulomb interactions will destroy the quantum spin Hall effect. However, the fate of the quantum spin Hall effect in the presence of magnetic impurities has not yet been experimentally investigated. Here, we report the successful experimental demonstration of a quantized spin Hall resistance in HgTe quantum wells dilutely alloyed with magnetic Mn atoms. These quantum wells exhibit an inverted band structure that is very similar to that of the undoped material. Micron sized devices of (Hg,Mn)Te quantum well (in the topological phase) show a quantized spin Hall resistance of h /2 e 2 at low temperatures and zero magnetic field. At finite temperatures, we observe signatures of the Kondo effect due to interaction between the helical edge channels and magnetic impurities. Our work lays the foundation for future investigations of magnetically doped quantum spin Hall materials towards the realization of chiral Majorana fermions. The quantum spin Hall effect is expected not to survive the presence of magnetic impurities. Here, authors report full quantization at very low temperatures in HgTe quantum wells alloyed with a few percent of magnetic Mn atoms, due to Kondo screening.</description><subject>639/766/119/2792/4128</subject><subject>639/766/119/2794</subject><subject>Alloying</subject><subject>Conductance</subject><subject>Electromagnetism</subject><subject>Electrons</subject><subject>Fermions</subject><subject>Humanities and Social Sciences</subject><subject>Impurities</subject><subject>Kondo effect</subject><subject>Low temperature</subject><subject>Low temperature resistance</subject><subject>Magnetic fields</subject><subject>Manganese</subject><subject>Mercury (metal)</subject><subject>multidisciplinary</subject><subject>Quantum Hall effect</subject><subject>Quantum wells</subject><subject>Resistance</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Topological insulators</subject><subject>Wells</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kkGL1TAQx4so7rLuF_BU8OKlu5kkbdqLIIu6Cwsi6FHCNJnWPtLkmbQu66c373VR14O5JMz8_v_MDFMUL4FdABPtZZIgG1UxDhUXvOEVPClOOZNQgeLi6V_vk-I8pR3LR3TQSvm8OBGSyVrWzWnx9dOKfpl-ki3TfvLlNTpXmuDtahb0hsocw3LG0dMymZy8L23YZ3q5C6WdZvJpCh5duYR9cGE8MFmTVodLiC-KZwO6ROcP91nx5f27z1fX1e3HDzdXb28rU4NaKpIE1HCGVjay61trsR6QY8eBeo4k0ShmehxgsL2SRnDT5fYaMDSAQCPOipvN1wbc6X2cZoz3OuCkj4EQR40x1-9I508azFMjEFwSESpQNHSD4p1gEtvs9Wbz2q_9TNaQXyK6R6aPM376psfwQ7fQMAZNNnj9YBDD95XSoucpGXIOPYU1aV6LXDrv1AF99Q-6C2vM4zxSgtW5SZUpvlEmhpQiDb-LAaYPy6C3ZdC5LX1cBg1ZJDZRyrAfKf6x_o_qF5M0t78</recordid><startdate>20210527</startdate><enddate>20210527</enddate><creator>Shamim, Saquib</creator><creator>Beugeling, Wouter</creator><creator>Shekhar, Pragya</creator><creator>Bendias, Kalle</creator><creator>Lunczer, Lukas</creator><creator>Kleinlein, Johannes</creator><creator>Buhmann, Hartmut</creator><creator>Molenkamp, Laurens W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8687-7441</orcidid><orcidid>https://orcid.org/0000-0002-3691-1821</orcidid><orcidid>https://orcid.org/0000-0003-4833-5179</orcidid><orcidid>https://orcid.org/0000-0001-5462-7923</orcidid></search><sort><creationdate>20210527</creationdate><title>Quantized spin Hall conductance in a magnetically doped two dimensional topological insulator</title><author>Shamim, Saquib ; Beugeling, Wouter ; Shekhar, Pragya ; Bendias, Kalle ; Lunczer, Lukas ; Kleinlein, Johannes ; Buhmann, Hartmut ; Molenkamp, Laurens W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-e4e1e620ad4649b8dda5fa2a921eb2ae4ac70cbaf1fdb74c32c920461cef13ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/766/119/2792/4128</topic><topic>639/766/119/2794</topic><topic>Alloying</topic><topic>Conductance</topic><topic>Electromagnetism</topic><topic>Electrons</topic><topic>Fermions</topic><topic>Humanities and Social Sciences</topic><topic>Impurities</topic><topic>Kondo effect</topic><topic>Low temperature</topic><topic>Low temperature resistance</topic><topic>Magnetic fields</topic><topic>Manganese</topic><topic>Mercury (metal)</topic><topic>multidisciplinary</topic><topic>Quantum Hall effect</topic><topic>Quantum wells</topic><topic>Resistance</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Topological insulators</topic><topic>Wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shamim, Saquib</creatorcontrib><creatorcontrib>Beugeling, Wouter</creatorcontrib><creatorcontrib>Shekhar, Pragya</creatorcontrib><creatorcontrib>Bendias, Kalle</creatorcontrib><creatorcontrib>Lunczer, Lukas</creatorcontrib><creatorcontrib>Kleinlein, Johannes</creatorcontrib><creatorcontrib>Buhmann, Hartmut</creatorcontrib><creatorcontrib>Molenkamp, Laurens W.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shamim, Saquib</au><au>Beugeling, Wouter</au><au>Shekhar, Pragya</au><au>Bendias, Kalle</au><au>Lunczer, Lukas</au><au>Kleinlein, Johannes</au><au>Buhmann, Hartmut</au><au>Molenkamp, Laurens W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantized spin Hall conductance in a magnetically doped two dimensional topological insulator</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2021-05-27</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>3193</spage><epage>3193</epage><pages>3193-3193</pages><artnum>3193</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Soon after the discovery of the quantum spin Hall effect, it has been predicted that a magnetic impurity in the presence of strong Coulomb interactions will destroy the quantum spin Hall effect. However, the fate of the quantum spin Hall effect in the presence of magnetic impurities has not yet been experimentally investigated. Here, we report the successful experimental demonstration of a quantized spin Hall resistance in HgTe quantum wells dilutely alloyed with magnetic Mn atoms. These quantum wells exhibit an inverted band structure that is very similar to that of the undoped material. Micron sized devices of (Hg,Mn)Te quantum well (in the topological phase) show a quantized spin Hall resistance of h /2 e 2 at low temperatures and zero magnetic field. At finite temperatures, we observe signatures of the Kondo effect due to interaction between the helical edge channels and magnetic impurities. Our work lays the foundation for future investigations of magnetically doped quantum spin Hall materials towards the realization of chiral Majorana fermions. The quantum spin Hall effect is expected not to survive the presence of magnetic impurities. Here, authors report full quantization at very low temperatures in HgTe quantum wells alloyed with a few percent of magnetic Mn atoms, due to Kondo screening.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34045456</pmid><doi>10.1038/s41467-021-23262-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8687-7441</orcidid><orcidid>https://orcid.org/0000-0002-3691-1821</orcidid><orcidid>https://orcid.org/0000-0003-4833-5179</orcidid><orcidid>https://orcid.org/0000-0001-5462-7923</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-05, Vol.12 (1), p.3193-3193, Article 3193
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0ad6a021e1324eeea717ef9f729304a8
source Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766/119/2792/4128
639/766/119/2794
Alloying
Conductance
Electromagnetism
Electrons
Fermions
Humanities and Social Sciences
Impurities
Kondo effect
Low temperature
Low temperature resistance
Magnetic fields
Manganese
Mercury (metal)
multidisciplinary
Quantum Hall effect
Quantum wells
Resistance
Science
Science (multidisciplinary)
Topological insulators
Wells
title Quantized spin Hall conductance in a magnetically doped two dimensional topological insulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantized%20spin%20Hall%20conductance%20in%20a%20magnetically%20doped%20two%20dimensional%20topological%20insulator&rft.jtitle=Nature%20communications&rft.au=Shamim,%20Saquib&rft.date=2021-05-27&rft.volume=12&rft.issue=1&rft.spage=3193&rft.epage=3193&rft.pages=3193-3193&rft.artnum=3193&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-23262-1&rft_dat=%3Cproquest_doaj_%3E2534612976%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-e4e1e620ad4649b8dda5fa2a921eb2ae4ac70cbaf1fdb74c32c920461cef13ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533050467&rft_id=info:pmid/34045456&rfr_iscdi=true