Loading…

Fully Automated Segmentation of Lung Parenchyma Using Break and Repair Strategy

The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent systems 2019-04, Vol.28 (2), p.275-289
Main Authors: Kumar, S. Pramod, Latte, Mrityunjaya V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363
cites cdi_FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363
container_end_page 289
container_issue 2
container_start_page 275
container_title Journal of intelligent systems
container_volume 28
creator Kumar, S. Pramod
Latte, Mrityunjaya V.
description The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal threshold selection and 2D reconstruction for lung parenchyma segmentation. Then, lung parenchyma boundaries are repaired using improved chain code and Bresenham pixel interconnection. The proposed method of segmentation and repairing is fully automated. Here, 21 thoracic computer tomography slices having juxtapleural nodules and 115 lung parenchyma scans are used to verify the robustness and accuracy of the proposed method. Results are compared with the most cited active contour methods. Empirical results show that the proposed fully automated method for segmenting lung parenchyma is more accurate. The proposed method is 100% sensitive to the inclusion of nodules/tumors adhering to the lung pleural wall, the juxtapleural nodule segmentation is >98%, and the lung parenchyma segmentation accuracy is >96%.
doi_str_mv 10.1515/jisys-2017-0020
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0aeec02614cc49d7b3f1ec9cb3f1c2d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0aeec02614cc49d7b3f1ec9cb3f1c2d3</doaj_id><sourcerecordid>2203838169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363</originalsourceid><addsrcrecordid>eNp1UcFq3DAQFaWFLGnOuQpydiJpZFk-5JCEpg0spDQN9Ca08sj11mttJJniv682W5pT5_KG4b03wzxCzjm75DWvr7ZDWlIlGG8qxgR7R1aCt7xiQv14T1YMQFZcK3ZCzlLaslKy5bWuV-Txfh7Hhd7MOexsxo4-Yb_DKds8hIkGT9fz1NOvNuLkfi47S5_TUAa3Ee0vaqeOfsO9HSJ9yrHI--Uj-eDtmPDsL56S5_tP3---VOvHzw93N-vKSWC54psGGDjp7aarFSBzXEPrVOca5xWwFqzyjQbQrdUMteQeUXIhvHBKgoJT8nD07YLdmn0cdjYuJtjBvA5C7I2NeXAjGmYRXfkEl87Jtms24Dm61h3QiQ6K18XRax_Dy4wpm22Y41TON0Iw0KC5agvr6shyMaQU0f_bypk5hGBeQzCHEMwhhKK4Pip-2zFj7LCP81KaN_v_KIUWoqnhD7FGjq8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203838169</pqid></control><display><type>article</type><title>Fully Automated Segmentation of Lung Parenchyma Using Break and Repair Strategy</title><source>De Gruyter Open Access Journals</source><creator>Kumar, S. Pramod ; Latte, Mrityunjaya V.</creator><creatorcontrib>Kumar, S. Pramod ; Latte, Mrityunjaya V.</creatorcontrib><description>The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal threshold selection and 2D reconstruction for lung parenchyma segmentation. Then, lung parenchyma boundaries are repaired using improved chain code and Bresenham pixel interconnection. The proposed method of segmentation and repairing is fully automated. Here, 21 thoracic computer tomography slices having juxtapleural nodules and 115 lung parenchyma scans are used to verify the robustness and accuracy of the proposed method. Results are compared with the most cited active contour methods. Empirical results show that the proposed fully automated method for segmenting lung parenchyma is more accurate. The proposed method is 100% sensitive to the inclusion of nodules/tumors adhering to the lung pleural wall, the juxtapleural nodule segmentation is &gt;98%, and the lung parenchyma segmentation accuracy is &gt;96%.</description><identifier>ISSN: 0334-1860</identifier><identifier>EISSN: 2191-026X</identifier><identifier>DOI: 10.1515/jisys-2017-0020</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>62H35 ; 68T99 ; 68U10 ; Amputation ; Automation ; Bresenham method ; Carcinogens ; Computed tomography ; improved chain code ; Lungs ; Methods ; Nodules ; pulmonary parenchyma ; Segmentation ; Sodium ; Temperature ; thoracic CT slice ; Tumors</subject><ispartof>Journal of intelligent systems, 2019-04, Vol.28 (2), p.275-289</ispartof><rights>2019 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363</citedby><cites>FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jisys-2017-0020/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jisys-2017-0020/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,67158,68942</link.rule.ids></links><search><creatorcontrib>Kumar, S. Pramod</creatorcontrib><creatorcontrib>Latte, Mrityunjaya V.</creatorcontrib><title>Fully Automated Segmentation of Lung Parenchyma Using Break and Repair Strategy</title><title>Journal of intelligent systems</title><description>The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal threshold selection and 2D reconstruction for lung parenchyma segmentation. Then, lung parenchyma boundaries are repaired using improved chain code and Bresenham pixel interconnection. The proposed method of segmentation and repairing is fully automated. Here, 21 thoracic computer tomography slices having juxtapleural nodules and 115 lung parenchyma scans are used to verify the robustness and accuracy of the proposed method. Results are compared with the most cited active contour methods. Empirical results show that the proposed fully automated method for segmenting lung parenchyma is more accurate. The proposed method is 100% sensitive to the inclusion of nodules/tumors adhering to the lung pleural wall, the juxtapleural nodule segmentation is &gt;98%, and the lung parenchyma segmentation accuracy is &gt;96%.</description><subject>62H35</subject><subject>68T99</subject><subject>68U10</subject><subject>Amputation</subject><subject>Automation</subject><subject>Bresenham method</subject><subject>Carcinogens</subject><subject>Computed tomography</subject><subject>improved chain code</subject><subject>Lungs</subject><subject>Methods</subject><subject>Nodules</subject><subject>pulmonary parenchyma</subject><subject>Segmentation</subject><subject>Sodium</subject><subject>Temperature</subject><subject>thoracic CT slice</subject><subject>Tumors</subject><issn>0334-1860</issn><issn>2191-026X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1UcFq3DAQFaWFLGnOuQpydiJpZFk-5JCEpg0spDQN9Ca08sj11mttJJniv682W5pT5_KG4b03wzxCzjm75DWvr7ZDWlIlGG8qxgR7R1aCt7xiQv14T1YMQFZcK3ZCzlLaslKy5bWuV-Txfh7Hhd7MOexsxo4-Yb_DKds8hIkGT9fz1NOvNuLkfi47S5_TUAa3Ee0vaqeOfsO9HSJ9yrHI--Uj-eDtmPDsL56S5_tP3---VOvHzw93N-vKSWC54psGGDjp7aarFSBzXEPrVOca5xWwFqzyjQbQrdUMteQeUXIhvHBKgoJT8nD07YLdmn0cdjYuJtjBvA5C7I2NeXAjGmYRXfkEl87Jtms24Dm61h3QiQ6K18XRax_Dy4wpm22Y41TON0Iw0KC5agvr6shyMaQU0f_bypk5hGBeQzCHEMwhhKK4Pip-2zFj7LCP81KaN_v_KIUWoqnhD7FGjq8</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Kumar, S. Pramod</creator><creator>Latte, Mrityunjaya V.</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>DOA</scope></search><sort><creationdate>20190401</creationdate><title>Fully Automated Segmentation of Lung Parenchyma Using Break and Repair Strategy</title><author>Kumar, S. Pramod ; Latte, Mrityunjaya V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>62H35</topic><topic>68T99</topic><topic>68U10</topic><topic>Amputation</topic><topic>Automation</topic><topic>Bresenham method</topic><topic>Carcinogens</topic><topic>Computed tomography</topic><topic>improved chain code</topic><topic>Lungs</topic><topic>Methods</topic><topic>Nodules</topic><topic>pulmonary parenchyma</topic><topic>Segmentation</topic><topic>Sodium</topic><topic>Temperature</topic><topic>thoracic CT slice</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, S. Pramod</creatorcontrib><creatorcontrib>Latte, Mrityunjaya V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, S. Pramod</au><au>Latte, Mrityunjaya V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automated Segmentation of Lung Parenchyma Using Break and Repair Strategy</atitle><jtitle>Journal of intelligent systems</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>28</volume><issue>2</issue><spage>275</spage><epage>289</epage><pages>275-289</pages><issn>0334-1860</issn><eissn>2191-026X</eissn><abstract>The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal threshold selection and 2D reconstruction for lung parenchyma segmentation. Then, lung parenchyma boundaries are repaired using improved chain code and Bresenham pixel interconnection. The proposed method of segmentation and repairing is fully automated. Here, 21 thoracic computer tomography slices having juxtapleural nodules and 115 lung parenchyma scans are used to verify the robustness and accuracy of the proposed method. Results are compared with the most cited active contour methods. Empirical results show that the proposed fully automated method for segmenting lung parenchyma is more accurate. The proposed method is 100% sensitive to the inclusion of nodules/tumors adhering to the lung pleural wall, the juxtapleural nodule segmentation is &gt;98%, and the lung parenchyma segmentation accuracy is &gt;96%.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jisys-2017-0020</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0334-1860
ispartof Journal of intelligent systems, 2019-04, Vol.28 (2), p.275-289
issn 0334-1860
2191-026X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0aeec02614cc49d7b3f1ec9cb3f1c2d3
source De Gruyter Open Access Journals
subjects 62H35
68T99
68U10
Amputation
Automation
Bresenham method
Carcinogens
Computed tomography
improved chain code
Lungs
Methods
Nodules
pulmonary parenchyma
Segmentation
Sodium
Temperature
thoracic CT slice
Tumors
title Fully Automated Segmentation of Lung Parenchyma Using Break and Repair Strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automated%20Segmentation%20of%20Lung%20Parenchyma%20Using%20Break%20and%20Repair%20Strategy&rft.jtitle=Journal%20of%20intelligent%20systems&rft.au=Kumar,%20S.%20Pramod&rft.date=2019-04-01&rft.volume=28&rft.issue=2&rft.spage=275&rft.epage=289&rft.pages=275-289&rft.issn=0334-1860&rft.eissn=2191-026X&rft_id=info:doi/10.1515/jisys-2017-0020&rft_dat=%3Cproquest_doaj_%3E2203838169%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203838169&rft_id=info:pmid/&rfr_iscdi=true