Loading…
Fully Automated Segmentation of Lung Parenchyma Using Break and Repair Strategy
The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal...
Saved in:
Published in: | Journal of intelligent systems 2019-04, Vol.28 (2), p.275-289 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363 |
container_end_page | 289 |
container_issue | 2 |
container_start_page | 275 |
container_title | Journal of intelligent systems |
container_volume | 28 |
creator | Kumar, S. Pramod Latte, Mrityunjaya V. |
description | The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal threshold selection and 2D reconstruction for lung parenchyma segmentation. Then, lung parenchyma boundaries are repaired using improved chain code and Bresenham pixel interconnection. The proposed method of segmentation and repairing is fully automated. Here, 21 thoracic computer tomography slices having juxtapleural nodules and 115 lung parenchyma scans are used to verify the robustness and accuracy of the proposed method. Results are compared with the most cited active contour methods. Empirical results show that the proposed fully automated method for segmenting lung parenchyma is more accurate. The proposed method is 100% sensitive to the inclusion of nodules/tumors adhering to the lung pleural wall, the juxtapleural nodule segmentation is >98%, and the lung parenchyma segmentation accuracy is >96%. |
doi_str_mv | 10.1515/jisys-2017-0020 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0aeec02614cc49d7b3f1ec9cb3f1c2d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0aeec02614cc49d7b3f1ec9cb3f1c2d3</doaj_id><sourcerecordid>2203838169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363</originalsourceid><addsrcrecordid>eNp1UcFq3DAQFaWFLGnOuQpydiJpZFk-5JCEpg0spDQN9Ca08sj11mttJJniv682W5pT5_KG4b03wzxCzjm75DWvr7ZDWlIlGG8qxgR7R1aCt7xiQv14T1YMQFZcK3ZCzlLaslKy5bWuV-Txfh7Hhd7MOexsxo4-Yb_DKds8hIkGT9fz1NOvNuLkfi47S5_TUAa3Ee0vaqeOfsO9HSJ9yrHI--Uj-eDtmPDsL56S5_tP3---VOvHzw93N-vKSWC54psGGDjp7aarFSBzXEPrVOca5xWwFqzyjQbQrdUMteQeUXIhvHBKgoJT8nD07YLdmn0cdjYuJtjBvA5C7I2NeXAjGmYRXfkEl87Jtms24Dm61h3QiQ6K18XRax_Dy4wpm22Y41TON0Iw0KC5agvr6shyMaQU0f_bypk5hGBeQzCHEMwhhKK4Pip-2zFj7LCP81KaN_v_KIUWoqnhD7FGjq8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203838169</pqid></control><display><type>article</type><title>Fully Automated Segmentation of Lung Parenchyma Using Break and Repair Strategy</title><source>De Gruyter Open Access Journals</source><creator>Kumar, S. Pramod ; Latte, Mrityunjaya V.</creator><creatorcontrib>Kumar, S. Pramod ; Latte, Mrityunjaya V.</creatorcontrib><description>The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal threshold selection and 2D reconstruction for lung parenchyma segmentation. Then, lung parenchyma boundaries are repaired using improved chain code and Bresenham pixel interconnection. The proposed method of segmentation and repairing is fully automated. Here, 21 thoracic computer tomography slices having juxtapleural nodules and 115 lung parenchyma scans are used to verify the robustness and accuracy of the proposed method. Results are compared with the most cited active contour methods. Empirical results show that the proposed fully automated method for segmenting lung parenchyma is more accurate. The proposed method is 100% sensitive to the inclusion of nodules/tumors adhering to the lung pleural wall, the juxtapleural nodule segmentation is >98%, and the lung parenchyma segmentation accuracy is >96%.</description><identifier>ISSN: 0334-1860</identifier><identifier>EISSN: 2191-026X</identifier><identifier>DOI: 10.1515/jisys-2017-0020</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>62H35 ; 68T99 ; 68U10 ; Amputation ; Automation ; Bresenham method ; Carcinogens ; Computed tomography ; improved chain code ; Lungs ; Methods ; Nodules ; pulmonary parenchyma ; Segmentation ; Sodium ; Temperature ; thoracic CT slice ; Tumors</subject><ispartof>Journal of intelligent systems, 2019-04, Vol.28 (2), p.275-289</ispartof><rights>2019 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363</citedby><cites>FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jisys-2017-0020/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jisys-2017-0020/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,67158,68942</link.rule.ids></links><search><creatorcontrib>Kumar, S. Pramod</creatorcontrib><creatorcontrib>Latte, Mrityunjaya V.</creatorcontrib><title>Fully Automated Segmentation of Lung Parenchyma Using Break and Repair Strategy</title><title>Journal of intelligent systems</title><description>The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal threshold selection and 2D reconstruction for lung parenchyma segmentation. Then, lung parenchyma boundaries are repaired using improved chain code and Bresenham pixel interconnection. The proposed method of segmentation and repairing is fully automated. Here, 21 thoracic computer tomography slices having juxtapleural nodules and 115 lung parenchyma scans are used to verify the robustness and accuracy of the proposed method. Results are compared with the most cited active contour methods. Empirical results show that the proposed fully automated method for segmenting lung parenchyma is more accurate. The proposed method is 100% sensitive to the inclusion of nodules/tumors adhering to the lung pleural wall, the juxtapleural nodule segmentation is >98%, and the lung parenchyma segmentation accuracy is >96%.</description><subject>62H35</subject><subject>68T99</subject><subject>68U10</subject><subject>Amputation</subject><subject>Automation</subject><subject>Bresenham method</subject><subject>Carcinogens</subject><subject>Computed tomography</subject><subject>improved chain code</subject><subject>Lungs</subject><subject>Methods</subject><subject>Nodules</subject><subject>pulmonary parenchyma</subject><subject>Segmentation</subject><subject>Sodium</subject><subject>Temperature</subject><subject>thoracic CT slice</subject><subject>Tumors</subject><issn>0334-1860</issn><issn>2191-026X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1UcFq3DAQFaWFLGnOuQpydiJpZFk-5JCEpg0spDQN9Ca08sj11mttJJniv682W5pT5_KG4b03wzxCzjm75DWvr7ZDWlIlGG8qxgR7R1aCt7xiQv14T1YMQFZcK3ZCzlLaslKy5bWuV-Txfh7Hhd7MOexsxo4-Yb_DKds8hIkGT9fz1NOvNuLkfi47S5_TUAa3Ee0vaqeOfsO9HSJ9yrHI--Uj-eDtmPDsL56S5_tP3---VOvHzw93N-vKSWC54psGGDjp7aarFSBzXEPrVOca5xWwFqzyjQbQrdUMteQeUXIhvHBKgoJT8nD07YLdmn0cdjYuJtjBvA5C7I2NeXAjGmYRXfkEl87Jtms24Dm61h3QiQ6K18XRax_Dy4wpm22Y41TON0Iw0KC5agvr6shyMaQU0f_bypk5hGBeQzCHEMwhhKK4Pip-2zFj7LCP81KaN_v_KIUWoqnhD7FGjq8</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Kumar, S. Pramod</creator><creator>Latte, Mrityunjaya V.</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>DOA</scope></search><sort><creationdate>20190401</creationdate><title>Fully Automated Segmentation of Lung Parenchyma Using Break and Repair Strategy</title><author>Kumar, S. Pramod ; Latte, Mrityunjaya V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>62H35</topic><topic>68T99</topic><topic>68U10</topic><topic>Amputation</topic><topic>Automation</topic><topic>Bresenham method</topic><topic>Carcinogens</topic><topic>Computed tomography</topic><topic>improved chain code</topic><topic>Lungs</topic><topic>Methods</topic><topic>Nodules</topic><topic>pulmonary parenchyma</topic><topic>Segmentation</topic><topic>Sodium</topic><topic>Temperature</topic><topic>thoracic CT slice</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, S. Pramod</creatorcontrib><creatorcontrib>Latte, Mrityunjaya V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, S. Pramod</au><au>Latte, Mrityunjaya V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automated Segmentation of Lung Parenchyma Using Break and Repair Strategy</atitle><jtitle>Journal of intelligent systems</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>28</volume><issue>2</issue><spage>275</spage><epage>289</epage><pages>275-289</pages><issn>0334-1860</issn><eissn>2191-026X</eissn><abstract>The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal threshold selection and 2D reconstruction for lung parenchyma segmentation. Then, lung parenchyma boundaries are repaired using improved chain code and Bresenham pixel interconnection. The proposed method of segmentation and repairing is fully automated. Here, 21 thoracic computer tomography slices having juxtapleural nodules and 115 lung parenchyma scans are used to verify the robustness and accuracy of the proposed method. Results are compared with the most cited active contour methods. Empirical results show that the proposed fully automated method for segmenting lung parenchyma is more accurate. The proposed method is 100% sensitive to the inclusion of nodules/tumors adhering to the lung pleural wall, the juxtapleural nodule segmentation is >98%, and the lung parenchyma segmentation accuracy is >96%.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jisys-2017-0020</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0334-1860 |
ispartof | Journal of intelligent systems, 2019-04, Vol.28 (2), p.275-289 |
issn | 0334-1860 2191-026X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0aeec02614cc49d7b3f1ec9cb3f1c2d3 |
source | De Gruyter Open Access Journals |
subjects | 62H35 68T99 68U10 Amputation Automation Bresenham method Carcinogens Computed tomography improved chain code Lungs Methods Nodules pulmonary parenchyma Segmentation Sodium Temperature thoracic CT slice Tumors |
title | Fully Automated Segmentation of Lung Parenchyma Using Break and Repair Strategy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automated%20Segmentation%20of%20Lung%20Parenchyma%20Using%20Break%20and%20Repair%20Strategy&rft.jtitle=Journal%20of%20intelligent%20systems&rft.au=Kumar,%20S.%20Pramod&rft.date=2019-04-01&rft.volume=28&rft.issue=2&rft.spage=275&rft.epage=289&rft.pages=275-289&rft.issn=0334-1860&rft.eissn=2191-026X&rft_id=info:doi/10.1515/jisys-2017-0020&rft_dat=%3Cproquest_doaj_%3E2203838169%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-1b7303c4fabd563e0c1839c6dc7cf63093a6f783389a80e841fee4122f2c64363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203838169&rft_id=info:pmid/&rfr_iscdi=true |