Loading…

Affordable Fabrication of Conductive Electrodes and Dielectric Films for a Paper-based Digital Microfluidic Chip

In order to fabricate a digital microfluidic (DMF) chip, which requires a patterned array of electrodes coated with a dielectric film, we explored two simple methods: Ballpoint pen printing to generate the electrodes, and wrapping of a dielectric plastic film to coat the electrodes. For precise and...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2019-02, Vol.10 (2), p.109
Main Authors: Soum, Veasna, Kim, Yunpyo, Park, Sooyong, Chuong, Mary, Ryu, Soo Ryeon, Lee, Sang Ho, Tanev, Georgi, Madsen, Jan, Kwon, Oh-Sun, Shin, Kwanwoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to fabricate a digital microfluidic (DMF) chip, which requires a patterned array of electrodes coated with a dielectric film, we explored two simple methods: Ballpoint pen printing to generate the electrodes, and wrapping of a dielectric plastic film to coat the electrodes. For precise and programmable printing of the patterned electrodes, we used a digital plotter with a ballpoint pen filled with a silver nanoparticle (AgNP) ink. Instead of using conventional material deposition methods, such as chemical vapor deposition, printing, and spin coating, for fabricating the thin dielectric layer, we used a simple method in which we prepared a thin dielectric layer using pre-made linear, low-density polyethylene (LLDPE) plastic (17-μm thick) by simple wrapping. We then sealed it tightly with thin silicone oil layers so that it could be used as a DMF chip. Such a treated dielectric layer showed good electrowetting performance for a sessile drop without contact angle hysteresis under an applied voltage of less than 170 V. By using this straightforward fabrication method, we quickly and affordably fabricated a paper-based DMF chip and demonstrated the digital electrofluidic actuation and manipulation of drops.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi10020109