Loading…

Molecular switching by proton-coupled electron transport drives giant negative differential resistance

To develop new types of dynamic molecular devices with atomic-scale control over electronic function, new types of molecular switches are needed with time-dependent switching probabilities. We report such a molecular switch based on proton-coupled electron transfer (PCET) reaction with giant hysteri...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-09, Vol.15 (1), p.8300-9, Article 8300
Main Authors: Zhang, Qian, Wang, Yulong, Nickle, Cameron, Zhang, Ziyu, Leoncini, Andrea, Qi, Dong-Chen, Sotthewes, Kai, Borrini, Alessandro, Zandvliet, Harold J. W., del Barco, Enrique, Thompson, Damien, Nijhuis, Christian A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c337y-2048f44e30da846e47d5e6173badcf5fd5945d2e94b68007b235c5b75ac865533
container_end_page 9
container_issue 1
container_start_page 8300
container_title Nature communications
container_volume 15
creator Zhang, Qian
Wang, Yulong
Nickle, Cameron
Zhang, Ziyu
Leoncini, Andrea
Qi, Dong-Chen
Sotthewes, Kai
Borrini, Alessandro
Zandvliet, Harold J. W.
del Barco, Enrique
Thompson, Damien
Nijhuis, Christian A.
description To develop new types of dynamic molecular devices with atomic-scale control over electronic function, new types of molecular switches are needed with time-dependent switching probabilities. We report such a molecular switch based on proton-coupled electron transfer (PCET) reaction with giant hysteric negative differential resistance (NDR) with peak-to-valley ratios of 120 ± 6.6 and memory on/off ratios of (2.4 ± 0.6) × 10 3 . The switching dynamics probabilities are modulated by bias voltage sweep rate and can also be controlled by pH and relative humidity, confirmed by kinetic isotope effect measurements. The demonstrated dynamical and environment-specific modulation of giant NDR and memory effects provide new opportunities for bioelectronics and artificial neural networks. It is a challenge to develop molecular switches with time-dependent probabilities. Here, the authors present a molecular switch based on proton-coupled electron transfer reaction with demonstration of dynamical and environment-specific modulation of giant negative differential resistance and memory effects.
doi_str_mv 10.1038/s41467-024-52496-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0b18274bd4c44c1f8b9cd9b9c82b9922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0b18274bd4c44c1f8b9cd9b9c82b9922</doaj_id><sourcerecordid>3110561772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337y-2048f44e30da846e47d5e6173badcf5fd5945d2e94b68007b235c5b75ac865533</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEolXpC7BAkdiwSfE1dlYIVVwqFbGBteXYk9RHOXawnaK8PT4nbWlZ4IVv889nz-ivqtcYXWBE5fvEMGtFgwhrOGFd26zPqlOCGG6wIPT5o_1JdZ7SDpVBOywZe1md0I5SymR7Wg3fwgRmmXSs02-XzY3zY92v9RxDDr4xYZknsDUUUY7B1zlqn-YQc22ju4VUj077XHsYdS7n2rphgAg-Oz3VEZJLWXsDr6oXg54SnN-tZ9XPz59-XH5trr9_ubr8eN0YSsXalD_LgTGgyGrJWmDCcmixoL22ZuCD5R3jlkDH-lYiJHpCueG94NrIlnNKz6qrjWuD3qk5ur2OqwraqeNFiKPSMTszgUI9lkSw3jLDmMGD7DtjuzJJ0ncdIYX1YWPNS78Ha0pRUU9PoE8j3t2oMdwqjBltJTsQ3t0RYvi1QMpq75KBadIewpIUxRgJIlvRFunbf6S7sERfenVU8dIEcQCSTWViSCnC8PAbjNTBFmqzhSq2UEdbqLUkvXlcx0PKvQmKgG6CVEJ-hPj37f9g_wDOJcVo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110561772</pqid></control><display><type>article</type><title>Molecular switching by proton-coupled electron transport drives giant negative differential resistance</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhang, Qian ; Wang, Yulong ; Nickle, Cameron ; Zhang, Ziyu ; Leoncini, Andrea ; Qi, Dong-Chen ; Sotthewes, Kai ; Borrini, Alessandro ; Zandvliet, Harold J. W. ; del Barco, Enrique ; Thompson, Damien ; Nijhuis, Christian A.</creator><creatorcontrib>Zhang, Qian ; Wang, Yulong ; Nickle, Cameron ; Zhang, Ziyu ; Leoncini, Andrea ; Qi, Dong-Chen ; Sotthewes, Kai ; Borrini, Alessandro ; Zandvliet, Harold J. W. ; del Barco, Enrique ; Thompson, Damien ; Nijhuis, Christian A.</creatorcontrib><description>To develop new types of dynamic molecular devices with atomic-scale control over electronic function, new types of molecular switches are needed with time-dependent switching probabilities. We report such a molecular switch based on proton-coupled electron transfer (PCET) reaction with giant hysteric negative differential resistance (NDR) with peak-to-valley ratios of 120 ± 6.6 and memory on/off ratios of (2.4 ± 0.6) × 10 3 . The switching dynamics probabilities are modulated by bias voltage sweep rate and can also be controlled by pH and relative humidity, confirmed by kinetic isotope effect measurements. The demonstrated dynamical and environment-specific modulation of giant NDR and memory effects provide new opportunities for bioelectronics and artificial neural networks. It is a challenge to develop molecular switches with time-dependent probabilities. Here, the authors present a molecular switch based on proton-coupled electron transfer reaction with demonstration of dynamical and environment-specific modulation of giant negative differential resistance and memory effects.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-52496-y</identifier><identifier>PMID: 39333486</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/638/542/970 ; 639/925/357/341 ; 639/925/927/998 ; Artificial neural networks ; Chemistry ; Electrodes ; Electron transfer ; Electron transport ; Electrons ; Energy ; Humanities and Social Sciences ; Humidity ; Isotope effect ; Modulation ; Molecular machines ; multidisciplinary ; Nanotechnology ; Neural networks ; Oxidation ; Physics ; Protons ; Ratios ; Relative humidity ; Science ; Science (multidisciplinary) ; Switches ; Time dependence ; Voltage sweep rate</subject><ispartof>Nature communications, 2024-09, Vol.15 (1), p.8300-9, Article 8300</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c337y-2048f44e30da846e47d5e6173badcf5fd5945d2e94b68007b235c5b75ac865533</cites><orcidid>0000-0001-6809-139X ; 0000-0003-2340-5441 ; 0000-0001-8466-0257 ; 0000-0001-9441-0497 ; 0000-0002-8127-1085 ; 0000-0003-2073-6958 ; 0000-0002-5763-0076 ; 0000-0003-3435-4600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110561772/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110561772?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39333486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Wang, Yulong</creatorcontrib><creatorcontrib>Nickle, Cameron</creatorcontrib><creatorcontrib>Zhang, Ziyu</creatorcontrib><creatorcontrib>Leoncini, Andrea</creatorcontrib><creatorcontrib>Qi, Dong-Chen</creatorcontrib><creatorcontrib>Sotthewes, Kai</creatorcontrib><creatorcontrib>Borrini, Alessandro</creatorcontrib><creatorcontrib>Zandvliet, Harold J. W.</creatorcontrib><creatorcontrib>del Barco, Enrique</creatorcontrib><creatorcontrib>Thompson, Damien</creatorcontrib><creatorcontrib>Nijhuis, Christian A.</creatorcontrib><title>Molecular switching by proton-coupled electron transport drives giant negative differential resistance</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>To develop new types of dynamic molecular devices with atomic-scale control over electronic function, new types of molecular switches are needed with time-dependent switching probabilities. We report such a molecular switch based on proton-coupled electron transfer (PCET) reaction with giant hysteric negative differential resistance (NDR) with peak-to-valley ratios of 120 ± 6.6 and memory on/off ratios of (2.4 ± 0.6) × 10 3 . The switching dynamics probabilities are modulated by bias voltage sweep rate and can also be controlled by pH and relative humidity, confirmed by kinetic isotope effect measurements. The demonstrated dynamical and environment-specific modulation of giant NDR and memory effects provide new opportunities for bioelectronics and artificial neural networks. It is a challenge to develop molecular switches with time-dependent probabilities. Here, the authors present a molecular switch based on proton-coupled electron transfer reaction with demonstration of dynamical and environment-specific modulation of giant negative differential resistance and memory effects.</description><subject>119/118</subject><subject>639/638/542/970</subject><subject>639/925/357/341</subject><subject>639/925/927/998</subject><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Electrons</subject><subject>Energy</subject><subject>Humanities and Social Sciences</subject><subject>Humidity</subject><subject>Isotope effect</subject><subject>Modulation</subject><subject>Molecular machines</subject><subject>multidisciplinary</subject><subject>Nanotechnology</subject><subject>Neural networks</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Protons</subject><subject>Ratios</subject><subject>Relative humidity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Switches</subject><subject>Time dependence</subject><subject>Voltage sweep rate</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1TAQhiMEolXpC7BAkdiwSfE1dlYIVVwqFbGBteXYk9RHOXawnaK8PT4nbWlZ4IVv889nz-ivqtcYXWBE5fvEMGtFgwhrOGFd26zPqlOCGG6wIPT5o_1JdZ7SDpVBOywZe1md0I5SymR7Wg3fwgRmmXSs02-XzY3zY92v9RxDDr4xYZknsDUUUY7B1zlqn-YQc22ju4VUj077XHsYdS7n2rphgAg-Oz3VEZJLWXsDr6oXg54SnN-tZ9XPz59-XH5trr9_ubr8eN0YSsXalD_LgTGgyGrJWmDCcmixoL22ZuCD5R3jlkDH-lYiJHpCueG94NrIlnNKz6qrjWuD3qk5ur2OqwraqeNFiKPSMTszgUI9lkSw3jLDmMGD7DtjuzJJ0ncdIYX1YWPNS78Ha0pRUU9PoE8j3t2oMdwqjBltJTsQ3t0RYvi1QMpq75KBadIewpIUxRgJIlvRFunbf6S7sERfenVU8dIEcQCSTWViSCnC8PAbjNTBFmqzhSq2UEdbqLUkvXlcx0PKvQmKgG6CVEJ-hPj37f9g_wDOJcVo</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>Zhang, Qian</creator><creator>Wang, Yulong</creator><creator>Nickle, Cameron</creator><creator>Zhang, Ziyu</creator><creator>Leoncini, Andrea</creator><creator>Qi, Dong-Chen</creator><creator>Sotthewes, Kai</creator><creator>Borrini, Alessandro</creator><creator>Zandvliet, Harold J. W.</creator><creator>del Barco, Enrique</creator><creator>Thompson, Damien</creator><creator>Nijhuis, Christian A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6809-139X</orcidid><orcidid>https://orcid.org/0000-0003-2340-5441</orcidid><orcidid>https://orcid.org/0000-0001-8466-0257</orcidid><orcidid>https://orcid.org/0000-0001-9441-0497</orcidid><orcidid>https://orcid.org/0000-0002-8127-1085</orcidid><orcidid>https://orcid.org/0000-0003-2073-6958</orcidid><orcidid>https://orcid.org/0000-0002-5763-0076</orcidid><orcidid>https://orcid.org/0000-0003-3435-4600</orcidid></search><sort><creationdate>20240927</creationdate><title>Molecular switching by proton-coupled electron transport drives giant negative differential resistance</title><author>Zhang, Qian ; Wang, Yulong ; Nickle, Cameron ; Zhang, Ziyu ; Leoncini, Andrea ; Qi, Dong-Chen ; Sotthewes, Kai ; Borrini, Alessandro ; Zandvliet, Harold J. W. ; del Barco, Enrique ; Thompson, Damien ; Nijhuis, Christian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337y-2048f44e30da846e47d5e6173badcf5fd5945d2e94b68007b235c5b75ac865533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>119/118</topic><topic>639/638/542/970</topic><topic>639/925/357/341</topic><topic>639/925/927/998</topic><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Electrons</topic><topic>Energy</topic><topic>Humanities and Social Sciences</topic><topic>Humidity</topic><topic>Isotope effect</topic><topic>Modulation</topic><topic>Molecular machines</topic><topic>multidisciplinary</topic><topic>Nanotechnology</topic><topic>Neural networks</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Protons</topic><topic>Ratios</topic><topic>Relative humidity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Switches</topic><topic>Time dependence</topic><topic>Voltage sweep rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Wang, Yulong</creatorcontrib><creatorcontrib>Nickle, Cameron</creatorcontrib><creatorcontrib>Zhang, Ziyu</creatorcontrib><creatorcontrib>Leoncini, Andrea</creatorcontrib><creatorcontrib>Qi, Dong-Chen</creatorcontrib><creatorcontrib>Sotthewes, Kai</creatorcontrib><creatorcontrib>Borrini, Alessandro</creatorcontrib><creatorcontrib>Zandvliet, Harold J. W.</creatorcontrib><creatorcontrib>del Barco, Enrique</creatorcontrib><creatorcontrib>Thompson, Damien</creatorcontrib><creatorcontrib>Nijhuis, Christian A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qian</au><au>Wang, Yulong</au><au>Nickle, Cameron</au><au>Zhang, Ziyu</au><au>Leoncini, Andrea</au><au>Qi, Dong-Chen</au><au>Sotthewes, Kai</au><au>Borrini, Alessandro</au><au>Zandvliet, Harold J. W.</au><au>del Barco, Enrique</au><au>Thompson, Damien</au><au>Nijhuis, Christian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular switching by proton-coupled electron transport drives giant negative differential resistance</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-09-27</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>8300</spage><epage>9</epage><pages>8300-9</pages><artnum>8300</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>To develop new types of dynamic molecular devices with atomic-scale control over electronic function, new types of molecular switches are needed with time-dependent switching probabilities. We report such a molecular switch based on proton-coupled electron transfer (PCET) reaction with giant hysteric negative differential resistance (NDR) with peak-to-valley ratios of 120 ± 6.6 and memory on/off ratios of (2.4 ± 0.6) × 10 3 . The switching dynamics probabilities are modulated by bias voltage sweep rate and can also be controlled by pH and relative humidity, confirmed by kinetic isotope effect measurements. The demonstrated dynamical and environment-specific modulation of giant NDR and memory effects provide new opportunities for bioelectronics and artificial neural networks. It is a challenge to develop molecular switches with time-dependent probabilities. Here, the authors present a molecular switch based on proton-coupled electron transfer reaction with demonstration of dynamical and environment-specific modulation of giant negative differential resistance and memory effects.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39333486</pmid><doi>10.1038/s41467-024-52496-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6809-139X</orcidid><orcidid>https://orcid.org/0000-0003-2340-5441</orcidid><orcidid>https://orcid.org/0000-0001-8466-0257</orcidid><orcidid>https://orcid.org/0000-0001-9441-0497</orcidid><orcidid>https://orcid.org/0000-0002-8127-1085</orcidid><orcidid>https://orcid.org/0000-0003-2073-6958</orcidid><orcidid>https://orcid.org/0000-0002-5763-0076</orcidid><orcidid>https://orcid.org/0000-0003-3435-4600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-09, Vol.15 (1), p.8300-9, Article 8300
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0b18274bd4c44c1f8b9cd9b9c82b9922
source Open Access: PubMed Central; Publicly Available Content Database; Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
639/638/542/970
639/925/357/341
639/925/927/998
Artificial neural networks
Chemistry
Electrodes
Electron transfer
Electron transport
Electrons
Energy
Humanities and Social Sciences
Humidity
Isotope effect
Modulation
Molecular machines
multidisciplinary
Nanotechnology
Neural networks
Oxidation
Physics
Protons
Ratios
Relative humidity
Science
Science (multidisciplinary)
Switches
Time dependence
Voltage sweep rate
title Molecular switching by proton-coupled electron transport drives giant negative differential resistance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20switching%20by%20proton-coupled%20electron%20transport%20drives%20giant%20negative%20differential%20resistance&rft.jtitle=Nature%20communications&rft.au=Zhang,%20Qian&rft.date=2024-09-27&rft.volume=15&rft.issue=1&rft.spage=8300&rft.epage=9&rft.pages=8300-9&rft.artnum=8300&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-52496-y&rft_dat=%3Cproquest_doaj_%3E3110561772%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337y-2048f44e30da846e47d5e6173badcf5fd5945d2e94b68007b235c5b75ac865533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110561772&rft_id=info:pmid/39333486&rfr_iscdi=true