Loading…

Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle

The density functional theory developed earlier for Coulombic excited states is reconsidered using the nodal variational principle. It is much easier to solve the Kohn–Sham equations, because only the correct number of nodes of the orbitals should be insured instead of the orthogonality.

Saved in:
Bibliographic Details
Published in:Computation 2021-08, Vol.9 (8), p.93
Main Author: Nagy, Ágnes
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3
cites cdi_FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3
container_end_page
container_issue 8
container_start_page 93
container_title Computation
container_volume 9
creator Nagy, Ágnes
description The density functional theory developed earlier for Coulombic excited states is reconsidered using the nodal variational principle. It is much easier to solve the Kohn–Sham equations, because only the correct number of nodes of the orbitals should be insured instead of the orthogonality.
doi_str_mv 10.3390/computation9080093
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0b2efa012e8245ecb03236408cca36b4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0b2efa012e8245ecb03236408cca36b4</doaj_id><sourcerecordid>2565074565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3</originalsourceid><addsrcrecordid>eNplkd9LwzAQx4MoOOb-AZ8KPlcvSdMmjzo3HQwVnD74EtI01YyuqUkL7r83c0ME7-F-cd_PcRxC5xguKRVwpd2mG3rVW9cK4ACCHqERgUKkFIvi-E9-iiYhrCGawJQTGKG3W9MG22-T-dDqHUE1yerDOL9NXJ1M3dC4TWl1MvvStjdV8hz3mJDcqBAL1yYProqKV-WtOqifvG217Rpzhk5q1QQzOcQxepnPVtP7dPl4t5heL1NNOetTQwXOOdF1zoqCF0ILrcDUOWfKlDgvmS5VhhmjVSFoCQZElmPCQWgiONeajtFiz62cWsvO243yW-mUlT8N59-l8r3VjZFQElMrwMRwkjGjS6CE5hlEjKJ5mUXWxZ7Vefc5mNDLtRt8PCtIwnIGRRZ9nCL7Ke1dCN7Uv1sxyN1L5P-X0G8RvIFd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565074565</pqid></control><display><type>article</type><title>Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Nagy, Ágnes</creator><creatorcontrib>Nagy, Ágnes</creatorcontrib><description>The density functional theory developed earlier for Coulombic excited states is reconsidered using the nodal variational principle. It is much easier to solve the Kohn–Sham equations, because only the correct number of nodes of the orbitals should be insured instead of the orthogonality.</description><identifier>ISSN: 2079-3197</identifier><identifier>EISSN: 2079-3197</identifier><identifier>DOI: 10.3390/computation9080093</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Coulomb systems ; Density functional theory ; Energy ; Excitation ; excited states ; nodal variational principle ; Orthogonality</subject><ispartof>Computation, 2021-08, Vol.9 (8), p.93</ispartof><rights>2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3</citedby><cites>FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3</cites><orcidid>0000-0003-2605-9644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2565074565/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2565074565?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Nagy, Ágnes</creatorcontrib><title>Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle</title><title>Computation</title><description>The density functional theory developed earlier for Coulombic excited states is reconsidered using the nodal variational principle. It is much easier to solve the Kohn–Sham equations, because only the correct number of nodes of the orbitals should be insured instead of the orthogonality.</description><subject>Coulomb systems</subject><subject>Density functional theory</subject><subject>Energy</subject><subject>Excitation</subject><subject>excited states</subject><subject>nodal variational principle</subject><subject>Orthogonality</subject><issn>2079-3197</issn><issn>2079-3197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkd9LwzAQx4MoOOb-AZ8KPlcvSdMmjzo3HQwVnD74EtI01YyuqUkL7r83c0ME7-F-cd_PcRxC5xguKRVwpd2mG3rVW9cK4ACCHqERgUKkFIvi-E9-iiYhrCGawJQTGKG3W9MG22-T-dDqHUE1yerDOL9NXJ1M3dC4TWl1MvvStjdV8hz3mJDcqBAL1yYProqKV-WtOqifvG217Rpzhk5q1QQzOcQxepnPVtP7dPl4t5heL1NNOetTQwXOOdF1zoqCF0ILrcDUOWfKlDgvmS5VhhmjVSFoCQZElmPCQWgiONeajtFiz62cWsvO243yW-mUlT8N59-l8r3VjZFQElMrwMRwkjGjS6CE5hlEjKJ5mUXWxZ7Vefc5mNDLtRt8PCtIwnIGRRZ9nCL7Ke1dCN7Uv1sxyN1L5P-X0G8RvIFd</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Nagy, Ágnes</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2605-9644</orcidid></search><sort><creationdate>20210801</creationdate><title>Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle</title><author>Nagy, Ágnes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coulomb systems</topic><topic>Density functional theory</topic><topic>Energy</topic><topic>Excitation</topic><topic>excited states</topic><topic>nodal variational principle</topic><topic>Orthogonality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagy, Ágnes</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagy, Ágnes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle</atitle><jtitle>Computation</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>9</volume><issue>8</issue><spage>93</spage><pages>93-</pages><issn>2079-3197</issn><eissn>2079-3197</eissn><abstract>The density functional theory developed earlier for Coulombic excited states is reconsidered using the nodal variational principle. It is much easier to solve the Kohn–Sham equations, because only the correct number of nodes of the orbitals should be insured instead of the orthogonality.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/computation9080093</doi><orcidid>https://orcid.org/0000-0003-2605-9644</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-3197
ispartof Computation, 2021-08, Vol.9 (8), p.93
issn 2079-3197
2079-3197
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0b2efa012e8245ecb03236408cca36b4
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Coulomb systems
Density functional theory
Energy
Excitation
excited states
nodal variational principle
Orthogonality
title Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20Functional%20Theory%20of%20Coulombic%20Excited%20States%20Based%20on%20Nodal%20Variational%20Principle&rft.jtitle=Computation&rft.au=Nagy,%20%C3%81gnes&rft.date=2021-08-01&rft.volume=9&rft.issue=8&rft.spage=93&rft.pages=93-&rft.issn=2079-3197&rft.eissn=2079-3197&rft_id=info:doi/10.3390/computation9080093&rft_dat=%3Cproquest_doaj_%3E2565074565%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565074565&rft_id=info:pmid/&rfr_iscdi=true