Loading…
Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle
The density functional theory developed earlier for Coulombic excited states is reconsidered using the nodal variational principle. It is much easier to solve the Kohn–Sham equations, because only the correct number of nodes of the orbitals should be insured instead of the orthogonality.
Saved in:
Published in: | Computation 2021-08, Vol.9 (8), p.93 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3 |
container_end_page | |
container_issue | 8 |
container_start_page | 93 |
container_title | Computation |
container_volume | 9 |
creator | Nagy, Ágnes |
description | The density functional theory developed earlier for Coulombic excited states is reconsidered using the nodal variational principle. It is much easier to solve the Kohn–Sham equations, because only the correct number of nodes of the orbitals should be insured instead of the orthogonality. |
doi_str_mv | 10.3390/computation9080093 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0b2efa012e8245ecb03236408cca36b4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0b2efa012e8245ecb03236408cca36b4</doaj_id><sourcerecordid>2565074565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3</originalsourceid><addsrcrecordid>eNplkd9LwzAQx4MoOOb-AZ8KPlcvSdMmjzo3HQwVnD74EtI01YyuqUkL7r83c0ME7-F-cd_PcRxC5xguKRVwpd2mG3rVW9cK4ACCHqERgUKkFIvi-E9-iiYhrCGawJQTGKG3W9MG22-T-dDqHUE1yerDOL9NXJ1M3dC4TWl1MvvStjdV8hz3mJDcqBAL1yYProqKV-WtOqifvG217Rpzhk5q1QQzOcQxepnPVtP7dPl4t5heL1NNOetTQwXOOdF1zoqCF0ILrcDUOWfKlDgvmS5VhhmjVSFoCQZElmPCQWgiONeajtFiz62cWsvO243yW-mUlT8N59-l8r3VjZFQElMrwMRwkjGjS6CE5hlEjKJ5mUXWxZ7Vefc5mNDLtRt8PCtIwnIGRRZ9nCL7Ke1dCN7Uv1sxyN1L5P-X0G8RvIFd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565074565</pqid></control><display><type>article</type><title>Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Nagy, Ágnes</creator><creatorcontrib>Nagy, Ágnes</creatorcontrib><description>The density functional theory developed earlier for Coulombic excited states is reconsidered using the nodal variational principle. It is much easier to solve the Kohn–Sham equations, because only the correct number of nodes of the orbitals should be insured instead of the orthogonality.</description><identifier>ISSN: 2079-3197</identifier><identifier>EISSN: 2079-3197</identifier><identifier>DOI: 10.3390/computation9080093</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Coulomb systems ; Density functional theory ; Energy ; Excitation ; excited states ; nodal variational principle ; Orthogonality</subject><ispartof>Computation, 2021-08, Vol.9 (8), p.93</ispartof><rights>2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3</citedby><cites>FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3</cites><orcidid>0000-0003-2605-9644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2565074565/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2565074565?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Nagy, Ágnes</creatorcontrib><title>Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle</title><title>Computation</title><description>The density functional theory developed earlier for Coulombic excited states is reconsidered using the nodal variational principle. It is much easier to solve the Kohn–Sham equations, because only the correct number of nodes of the orbitals should be insured instead of the orthogonality.</description><subject>Coulomb systems</subject><subject>Density functional theory</subject><subject>Energy</subject><subject>Excitation</subject><subject>excited states</subject><subject>nodal variational principle</subject><subject>Orthogonality</subject><issn>2079-3197</issn><issn>2079-3197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkd9LwzAQx4MoOOb-AZ8KPlcvSdMmjzo3HQwVnD74EtI01YyuqUkL7r83c0ME7-F-cd_PcRxC5xguKRVwpd2mG3rVW9cK4ACCHqERgUKkFIvi-E9-iiYhrCGawJQTGKG3W9MG22-T-dDqHUE1yerDOL9NXJ1M3dC4TWl1MvvStjdV8hz3mJDcqBAL1yYProqKV-WtOqifvG217Rpzhk5q1QQzOcQxepnPVtP7dPl4t5heL1NNOetTQwXOOdF1zoqCF0ILrcDUOWfKlDgvmS5VhhmjVSFoCQZElmPCQWgiONeajtFiz62cWsvO243yW-mUlT8N59-l8r3VjZFQElMrwMRwkjGjS6CE5hlEjKJ5mUXWxZ7Vefc5mNDLtRt8PCtIwnIGRRZ9nCL7Ke1dCN7Uv1sxyN1L5P-X0G8RvIFd</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Nagy, Ágnes</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2605-9644</orcidid></search><sort><creationdate>20210801</creationdate><title>Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle</title><author>Nagy, Ágnes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coulomb systems</topic><topic>Density functional theory</topic><topic>Energy</topic><topic>Excitation</topic><topic>excited states</topic><topic>nodal variational principle</topic><topic>Orthogonality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagy, Ágnes</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagy, Ágnes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle</atitle><jtitle>Computation</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>9</volume><issue>8</issue><spage>93</spage><pages>93-</pages><issn>2079-3197</issn><eissn>2079-3197</eissn><abstract>The density functional theory developed earlier for Coulombic excited states is reconsidered using the nodal variational principle. It is much easier to solve the Kohn–Sham equations, because only the correct number of nodes of the orbitals should be insured instead of the orthogonality.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/computation9080093</doi><orcidid>https://orcid.org/0000-0003-2605-9644</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-3197 |
ispartof | Computation, 2021-08, Vol.9 (8), p.93 |
issn | 2079-3197 2079-3197 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0b2efa012e8245ecb03236408cca36b4 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Coulomb systems Density functional theory Energy Excitation excited states nodal variational principle Orthogonality |
title | Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20Functional%20Theory%20of%20Coulombic%20Excited%20States%20Based%20on%20Nodal%20Variational%20Principle&rft.jtitle=Computation&rft.au=Nagy,%20%C3%81gnes&rft.date=2021-08-01&rft.volume=9&rft.issue=8&rft.spage=93&rft.pages=93-&rft.issn=2079-3197&rft.eissn=2079-3197&rft_id=info:doi/10.3390/computation9080093&rft_dat=%3Cproquest_doaj_%3E2565074565%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-e391682cf6577879c9ca0ef685aeb16b5cba41553d793b0e094612809c2988cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565074565&rft_id=info:pmid/&rfr_iscdi=true |