Loading…

Strong and Localized Luminescence from Interface Bubbles Between Stacked hBN Multilayers

Extraordinary optoelectronic properties of van der Waals (vdW) heterostructures can be tuned via strain caused by mechanical deformation. Here, we demonstrate strong and localized luminescence in the ultraviolet region from interface bubbles between stacked multilayers of hexagonal boron nitride (hB...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-08, Vol.13 (1), p.5000-5000, Article 5000
Main Authors: Lee, Hae Yeon, Sarkar, Soumya, Reidy, Kate, Kumar, Abinash, Klein, Julian, Watanabe, Kenji, Taniguchi, Takashi, LeBeau, James M., Ross, Frances M., Gradečak, Silvija
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extraordinary optoelectronic properties of van der Waals (vdW) heterostructures can be tuned via strain caused by mechanical deformation. Here, we demonstrate strong and localized luminescence in the ultraviolet region from interface bubbles between stacked multilayers of hexagonal boron nitride (hBN). Compared to bubbles in stacked monolayers, bubbles formed by stacking vdW multilayers show distinct mechanical behavior. We use this behavior to elucidate radius- and thickness-dependent bubble geometry and the resulting strain across the bubble, from which we establish the thickness-dependent bending rigidity of hBN multilayers. We then utilize the polymeric material confined within the bubbles to modify the bubble geometry under electron beam irradiation, resulting in strong luminescence and formation of optical standing waves. Our results open a route to design and modulate microscopic-scale optical cavities via strain engineering in vdW materials, which we suggest will be relevant to both fundamental mechanical studies and optoelectronic applications. Optoelectronic properties of van der Waals heterostructures can be tuned via strain. Here, authors demonstrate strong and localized luminescence in the ultraviolet region from interface bubbles between stacked multilayers of hexagonal boron nitride.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-32708-z