Loading…
Revolutionizing automated pear picking using Mamba architecture
With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in curr...
Saved in:
Published in: | Plant methods 2024-11, Vol.20 (1), p.167-167, Article 167 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c440t-281992f4e8c60b0019134d1cc4c907bdf67c4c7c63f8faafb1e4b8a2db41923a3 |
container_end_page | 167 |
container_issue | 1 |
container_start_page | 167 |
container_title | Plant methods |
container_volume | 20 |
creator | Zhao, Peirui Cai, Weiwei Zhou, Wenhua Li, Na |
description | With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in current Transformer architectures. The proposed network, named SRSMamba, employs a Reward and Punishment Mechanism (RPM) to focus on important information while minimizing redundancy interference. It utilizes 3D Selective Scan (SS3D) to extend scanning dimensions and integrates global information across channel dimensions, thereby enhancing the model's robustness in complex agricultural environments and effectively adapting to the extraction of complex features in pear orchards and farmlands. Additionally, a Stacked Feature Pyramid Network (SFPN) is introduced to enhance semantic information during the feature fusion stage, particularly improving the detection capability for small targets. Experimental results show that SRSMamba has a low parameter count of 21.1 M, GFLOPs of 50.4, mAP of 72.0%, mAP50 reaching 94.8%, mAP75 at 68.1%, and FPS at 26.9. Compared with other state-of-the-art (SOTA) object detection methods, it achieves a good trade-off between model efficiency and detection accuracy. |
doi_str_mv | 10.1186/s13007-024-01287-z |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0b3231c6fade44ac887874454b9a8ced</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814877055</galeid><doaj_id>oai_doaj_org_article_0b3231c6fade44ac887874454b9a8ced</doaj_id><sourcerecordid>A814877055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-281992f4e8c60b0019134d1cc4c907bdf67c4c7c63f8faafb1e4b8a2db41923a3</originalsourceid><addsrcrecordid>eNqNklFr1TAUx4sobk6_gA9ywRf30JnTpEn6NMZwemEiTH0Op2naZbbNNUmH3k9vus6xgg8SSA4nv_M_5OSfZa-BnABI_j4AJUTkpGA5gUKKfP8kOwTBeM4kwNNH8UH2IoQbQhgUlD_PDmjFKgFcHGanV-bW9VO0brR7O3YbnKIbMJpmszPoNzurf8zpKcz7Zxxq3KDX1zYaHSdvXmbPWuyDeXV_HmXfLz58O_-UX375uD0_u8w1YyTmhYSqKlpmpOakJgQqoKwBrZmuiKiblosUCs1pK1vEtgbDaolFUzOoCor0KNsuuo3DG7XzdkD_Wzm06i7hfKfQR6t7o0hNCwqat9gYxlBLKaRgrGR1hVKbJmmdLlq7qR5Mo80YPfYr0fXNaK9V524VQEm5FGVSeHev4N3PyYSoBhu06XscjZuColAykLQU_D_QIv0KF0Qm9O2CdpieYcfWpe56xtWZBCaFIOXc--QfVFqNGax2o2ltyq8KjlcFiYnmV-xwCkFtv16t2WJhtXcheNM-TAWImk2nFtOpZDp1Zzq1T0VvHs_zoeSvy-gfShbRJg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124126708</pqid></control><display><type>article</type><title>Revolutionizing automated pear picking using Mamba architecture</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Zhao, Peirui ; Cai, Weiwei ; Zhou, Wenhua ; Li, Na</creator><creatorcontrib>Zhao, Peirui ; Cai, Weiwei ; Zhou, Wenhua ; Li, Na</creatorcontrib><description>With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in current Transformer architectures. The proposed network, named SRSMamba, employs a Reward and Punishment Mechanism (RPM) to focus on important information while minimizing redundancy interference. It utilizes 3D Selective Scan (SS3D) to extend scanning dimensions and integrates global information across channel dimensions, thereby enhancing the model's robustness in complex agricultural environments and effectively adapting to the extraction of complex features in pear orchards and farmlands. Additionally, a Stacked Feature Pyramid Network (SFPN) is introduced to enhance semantic information during the feature fusion stage, particularly improving the detection capability for small targets. Experimental results show that SRSMamba has a low parameter count of 21.1 M, GFLOPs of 50.4, mAP of 72.0%, mAP50 reaching 94.8%, mAP75 at 68.1%, and FPS at 26.9. Compared with other state-of-the-art (SOTA) object detection methods, it achieves a good trade-off between model efficiency and detection accuracy.</description><identifier>ISSN: 1746-4811</identifier><identifier>EISSN: 1746-4811</identifier><identifier>DOI: 10.1186/s13007-024-01287-z</identifier><identifier>PMID: 39497167</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Agricultural ; Automation ; Electric transformers ; Environmental aspects ; FPN ; Harvesting ; Machine vision ; Mechanization ; Methodology ; Neural networks ; Pear ; Pear picking ; pears ; Small targets ; Technology application ; Transformer ; vision ; Vmamba</subject><ispartof>Plant methods, 2024-11, Vol.20 (1), p.167-167, Article 167</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c440t-281992f4e8c60b0019134d1cc4c907bdf67c4c7c63f8faafb1e4b8a2db41923a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536875/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536875/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,36994,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39497167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Peirui</creatorcontrib><creatorcontrib>Cai, Weiwei</creatorcontrib><creatorcontrib>Zhou, Wenhua</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><title>Revolutionizing automated pear picking using Mamba architecture</title><title>Plant methods</title><addtitle>Plant Methods</addtitle><description>With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in current Transformer architectures. The proposed network, named SRSMamba, employs a Reward and Punishment Mechanism (RPM) to focus on important information while minimizing redundancy interference. It utilizes 3D Selective Scan (SS3D) to extend scanning dimensions and integrates global information across channel dimensions, thereby enhancing the model's robustness in complex agricultural environments and effectively adapting to the extraction of complex features in pear orchards and farmlands. Additionally, a Stacked Feature Pyramid Network (SFPN) is introduced to enhance semantic information during the feature fusion stage, particularly improving the detection capability for small targets. Experimental results show that SRSMamba has a low parameter count of 21.1 M, GFLOPs of 50.4, mAP of 72.0%, mAP50 reaching 94.8%, mAP75 at 68.1%, and FPS at 26.9. Compared with other state-of-the-art (SOTA) object detection methods, it achieves a good trade-off between model efficiency and detection accuracy.</description><subject>Agricultural</subject><subject>Automation</subject><subject>Electric transformers</subject><subject>Environmental aspects</subject><subject>FPN</subject><subject>Harvesting</subject><subject>Machine vision</subject><subject>Mechanization</subject><subject>Methodology</subject><subject>Neural networks</subject><subject>Pear</subject><subject>Pear picking</subject><subject>pears</subject><subject>Small targets</subject><subject>Technology application</subject><subject>Transformer</subject><subject>vision</subject><subject>Vmamba</subject><issn>1746-4811</issn><issn>1746-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNklFr1TAUx4sobk6_gA9ywRf30JnTpEn6NMZwemEiTH0Op2naZbbNNUmH3k9vus6xgg8SSA4nv_M_5OSfZa-BnABI_j4AJUTkpGA5gUKKfP8kOwTBeM4kwNNH8UH2IoQbQhgUlD_PDmjFKgFcHGanV-bW9VO0brR7O3YbnKIbMJpmszPoNzurf8zpKcz7Zxxq3KDX1zYaHSdvXmbPWuyDeXV_HmXfLz58O_-UX375uD0_u8w1YyTmhYSqKlpmpOakJgQqoKwBrZmuiKiblosUCs1pK1vEtgbDaolFUzOoCor0KNsuuo3DG7XzdkD_Wzm06i7hfKfQR6t7o0hNCwqat9gYxlBLKaRgrGR1hVKbJmmdLlq7qR5Mo80YPfYr0fXNaK9V524VQEm5FGVSeHev4N3PyYSoBhu06XscjZuColAykLQU_D_QIv0KF0Qm9O2CdpieYcfWpe56xtWZBCaFIOXc--QfVFqNGax2o2ltyq8KjlcFiYnmV-xwCkFtv16t2WJhtXcheNM-TAWImk2nFtOpZDp1Zzq1T0VvHs_zoeSvy-gfShbRJg</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Zhao, Peirui</creator><creator>Cai, Weiwei</creator><creator>Zhou, Wenhua</creator><creator>Li, Na</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241104</creationdate><title>Revolutionizing automated pear picking using Mamba architecture</title><author>Zhao, Peirui ; Cai, Weiwei ; Zhou, Wenhua ; Li, Na</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-281992f4e8c60b0019134d1cc4c907bdf67c4c7c63f8faafb1e4b8a2db41923a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural</topic><topic>Automation</topic><topic>Electric transformers</topic><topic>Environmental aspects</topic><topic>FPN</topic><topic>Harvesting</topic><topic>Machine vision</topic><topic>Mechanization</topic><topic>Methodology</topic><topic>Neural networks</topic><topic>Pear</topic><topic>Pear picking</topic><topic>pears</topic><topic>Small targets</topic><topic>Technology application</topic><topic>Transformer</topic><topic>vision</topic><topic>Vmamba</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Peirui</creatorcontrib><creatorcontrib>Cai, Weiwei</creatorcontrib><creatorcontrib>Zhou, Wenhua</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Plant methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Peirui</au><au>Cai, Weiwei</au><au>Zhou, Wenhua</au><au>Li, Na</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revolutionizing automated pear picking using Mamba architecture</atitle><jtitle>Plant methods</jtitle><addtitle>Plant Methods</addtitle><date>2024-11-04</date><risdate>2024</risdate><volume>20</volume><issue>1</issue><spage>167</spage><epage>167</epage><pages>167-167</pages><artnum>167</artnum><issn>1746-4811</issn><eissn>1746-4811</eissn><abstract>With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in current Transformer architectures. The proposed network, named SRSMamba, employs a Reward and Punishment Mechanism (RPM) to focus on important information while minimizing redundancy interference. It utilizes 3D Selective Scan (SS3D) to extend scanning dimensions and integrates global information across channel dimensions, thereby enhancing the model's robustness in complex agricultural environments and effectively adapting to the extraction of complex features in pear orchards and farmlands. Additionally, a Stacked Feature Pyramid Network (SFPN) is introduced to enhance semantic information during the feature fusion stage, particularly improving the detection capability for small targets. Experimental results show that SRSMamba has a low parameter count of 21.1 M, GFLOPs of 50.4, mAP of 72.0%, mAP50 reaching 94.8%, mAP75 at 68.1%, and FPS at 26.9. Compared with other state-of-the-art (SOTA) object detection methods, it achieves a good trade-off between model efficiency and detection accuracy.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39497167</pmid><doi>10.1186/s13007-024-01287-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1746-4811 |
ispartof | Plant methods, 2024-11, Vol.20 (1), p.167-167, Article 167 |
issn | 1746-4811 1746-4811 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0b3231c6fade44ac887874454b9a8ced |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Agricultural Automation Electric transformers Environmental aspects FPN Harvesting Machine vision Mechanization Methodology Neural networks Pear Pear picking pears Small targets Technology application Transformer vision Vmamba |
title | Revolutionizing automated pear picking using Mamba architecture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revolutionizing%20automated%20pear%20picking%20using%20Mamba%20architecture&rft.jtitle=Plant%20methods&rft.au=Zhao,%20Peirui&rft.date=2024-11-04&rft.volume=20&rft.issue=1&rft.spage=167&rft.epage=167&rft.pages=167-167&rft.artnum=167&rft.issn=1746-4811&rft.eissn=1746-4811&rft_id=info:doi/10.1186/s13007-024-01287-z&rft_dat=%3Cgale_doaj_%3EA814877055%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-281992f4e8c60b0019134d1cc4c907bdf67c4c7c63f8faafb1e4b8a2db41923a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3124126708&rft_id=info:pmid/39497167&rft_galeid=A814877055&rfr_iscdi=true |