Loading…

Revolutionizing automated pear picking using Mamba architecture

With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in curr...

Full description

Saved in:
Bibliographic Details
Published in:Plant methods 2024-11, Vol.20 (1), p.167-167, Article 167
Main Authors: Zhao, Peirui, Cai, Weiwei, Zhou, Wenhua, Li, Na
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c440t-281992f4e8c60b0019134d1cc4c907bdf67c4c7c63f8faafb1e4b8a2db41923a3
container_end_page 167
container_issue 1
container_start_page 167
container_title Plant methods
container_volume 20
creator Zhao, Peirui
Cai, Weiwei
Zhou, Wenhua
Li, Na
description With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in current Transformer architectures. The proposed network, named SRSMamba, employs a Reward and Punishment Mechanism (RPM) to focus on important information while minimizing redundancy interference. It utilizes 3D Selective Scan (SS3D) to extend scanning dimensions and integrates global information across channel dimensions, thereby enhancing the model's robustness in complex agricultural environments and effectively adapting to the extraction of complex features in pear orchards and farmlands. Additionally, a Stacked Feature Pyramid Network (SFPN) is introduced to enhance semantic information during the feature fusion stage, particularly improving the detection capability for small targets. Experimental results show that SRSMamba has a low parameter count of 21.1 M, GFLOPs of 50.4, mAP of 72.0%, mAP50 reaching 94.8%, mAP75 at 68.1%, and FPS at 26.9. Compared with other state-of-the-art (SOTA) object detection methods, it achieves a good trade-off between model efficiency and detection accuracy.
doi_str_mv 10.1186/s13007-024-01287-z
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0b3231c6fade44ac887874454b9a8ced</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814877055</galeid><doaj_id>oai_doaj_org_article_0b3231c6fade44ac887874454b9a8ced</doaj_id><sourcerecordid>A814877055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-281992f4e8c60b0019134d1cc4c907bdf67c4c7c63f8faafb1e4b8a2db41923a3</originalsourceid><addsrcrecordid>eNqNklFr1TAUx4sobk6_gA9ywRf30JnTpEn6NMZwemEiTH0Op2naZbbNNUmH3k9vus6xgg8SSA4nv_M_5OSfZa-BnABI_j4AJUTkpGA5gUKKfP8kOwTBeM4kwNNH8UH2IoQbQhgUlD_PDmjFKgFcHGanV-bW9VO0brR7O3YbnKIbMJpmszPoNzurf8zpKcz7Zxxq3KDX1zYaHSdvXmbPWuyDeXV_HmXfLz58O_-UX375uD0_u8w1YyTmhYSqKlpmpOakJgQqoKwBrZmuiKiblosUCs1pK1vEtgbDaolFUzOoCor0KNsuuo3DG7XzdkD_Wzm06i7hfKfQR6t7o0hNCwqat9gYxlBLKaRgrGR1hVKbJmmdLlq7qR5Mo80YPfYr0fXNaK9V524VQEm5FGVSeHev4N3PyYSoBhu06XscjZuColAykLQU_D_QIv0KF0Qm9O2CdpieYcfWpe56xtWZBCaFIOXc--QfVFqNGax2o2ltyq8KjlcFiYnmV-xwCkFtv16t2WJhtXcheNM-TAWImk2nFtOpZDp1Zzq1T0VvHs_zoeSvy-gfShbRJg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124126708</pqid></control><display><type>article</type><title>Revolutionizing automated pear picking using Mamba architecture</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Zhao, Peirui ; Cai, Weiwei ; Zhou, Wenhua ; Li, Na</creator><creatorcontrib>Zhao, Peirui ; Cai, Weiwei ; Zhou, Wenhua ; Li, Na</creatorcontrib><description>With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in current Transformer architectures. The proposed network, named SRSMamba, employs a Reward and Punishment Mechanism (RPM) to focus on important information while minimizing redundancy interference. It utilizes 3D Selective Scan (SS3D) to extend scanning dimensions and integrates global information across channel dimensions, thereby enhancing the model's robustness in complex agricultural environments and effectively adapting to the extraction of complex features in pear orchards and farmlands. Additionally, a Stacked Feature Pyramid Network (SFPN) is introduced to enhance semantic information during the feature fusion stage, particularly improving the detection capability for small targets. Experimental results show that SRSMamba has a low parameter count of 21.1 M, GFLOPs of 50.4, mAP of 72.0%, mAP50 reaching 94.8%, mAP75 at 68.1%, and FPS at 26.9. Compared with other state-of-the-art (SOTA) object detection methods, it achieves a good trade-off between model efficiency and detection accuracy.</description><identifier>ISSN: 1746-4811</identifier><identifier>EISSN: 1746-4811</identifier><identifier>DOI: 10.1186/s13007-024-01287-z</identifier><identifier>PMID: 39497167</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Agricultural ; Automation ; Electric transformers ; Environmental aspects ; FPN ; Harvesting ; Machine vision ; Mechanization ; Methodology ; Neural networks ; Pear ; Pear picking ; pears ; Small targets ; Technology application ; Transformer ; vision ; Vmamba</subject><ispartof>Plant methods, 2024-11, Vol.20 (1), p.167-167, Article 167</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c440t-281992f4e8c60b0019134d1cc4c907bdf67c4c7c63f8faafb1e4b8a2db41923a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536875/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536875/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,36994,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39497167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Peirui</creatorcontrib><creatorcontrib>Cai, Weiwei</creatorcontrib><creatorcontrib>Zhou, Wenhua</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><title>Revolutionizing automated pear picking using Mamba architecture</title><title>Plant methods</title><addtitle>Plant Methods</addtitle><description>With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in current Transformer architectures. The proposed network, named SRSMamba, employs a Reward and Punishment Mechanism (RPM) to focus on important information while minimizing redundancy interference. It utilizes 3D Selective Scan (SS3D) to extend scanning dimensions and integrates global information across channel dimensions, thereby enhancing the model's robustness in complex agricultural environments and effectively adapting to the extraction of complex features in pear orchards and farmlands. Additionally, a Stacked Feature Pyramid Network (SFPN) is introduced to enhance semantic information during the feature fusion stage, particularly improving the detection capability for small targets. Experimental results show that SRSMamba has a low parameter count of 21.1 M, GFLOPs of 50.4, mAP of 72.0%, mAP50 reaching 94.8%, mAP75 at 68.1%, and FPS at 26.9. Compared with other state-of-the-art (SOTA) object detection methods, it achieves a good trade-off between model efficiency and detection accuracy.</description><subject>Agricultural</subject><subject>Automation</subject><subject>Electric transformers</subject><subject>Environmental aspects</subject><subject>FPN</subject><subject>Harvesting</subject><subject>Machine vision</subject><subject>Mechanization</subject><subject>Methodology</subject><subject>Neural networks</subject><subject>Pear</subject><subject>Pear picking</subject><subject>pears</subject><subject>Small targets</subject><subject>Technology application</subject><subject>Transformer</subject><subject>vision</subject><subject>Vmamba</subject><issn>1746-4811</issn><issn>1746-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNklFr1TAUx4sobk6_gA9ywRf30JnTpEn6NMZwemEiTH0Op2naZbbNNUmH3k9vus6xgg8SSA4nv_M_5OSfZa-BnABI_j4AJUTkpGA5gUKKfP8kOwTBeM4kwNNH8UH2IoQbQhgUlD_PDmjFKgFcHGanV-bW9VO0brR7O3YbnKIbMJpmszPoNzurf8zpKcz7Zxxq3KDX1zYaHSdvXmbPWuyDeXV_HmXfLz58O_-UX375uD0_u8w1YyTmhYSqKlpmpOakJgQqoKwBrZmuiKiblosUCs1pK1vEtgbDaolFUzOoCor0KNsuuo3DG7XzdkD_Wzm06i7hfKfQR6t7o0hNCwqat9gYxlBLKaRgrGR1hVKbJmmdLlq7qR5Mo80YPfYr0fXNaK9V524VQEm5FGVSeHev4N3PyYSoBhu06XscjZuColAykLQU_D_QIv0KF0Qm9O2CdpieYcfWpe56xtWZBCaFIOXc--QfVFqNGax2o2ltyq8KjlcFiYnmV-xwCkFtv16t2WJhtXcheNM-TAWImk2nFtOpZDp1Zzq1T0VvHs_zoeSvy-gfShbRJg</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Zhao, Peirui</creator><creator>Cai, Weiwei</creator><creator>Zhou, Wenhua</creator><creator>Li, Na</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241104</creationdate><title>Revolutionizing automated pear picking using Mamba architecture</title><author>Zhao, Peirui ; Cai, Weiwei ; Zhou, Wenhua ; Li, Na</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-281992f4e8c60b0019134d1cc4c907bdf67c4c7c63f8faafb1e4b8a2db41923a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural</topic><topic>Automation</topic><topic>Electric transformers</topic><topic>Environmental aspects</topic><topic>FPN</topic><topic>Harvesting</topic><topic>Machine vision</topic><topic>Mechanization</topic><topic>Methodology</topic><topic>Neural networks</topic><topic>Pear</topic><topic>Pear picking</topic><topic>pears</topic><topic>Small targets</topic><topic>Technology application</topic><topic>Transformer</topic><topic>vision</topic><topic>Vmamba</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Peirui</creatorcontrib><creatorcontrib>Cai, Weiwei</creatorcontrib><creatorcontrib>Zhou, Wenhua</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Plant methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Peirui</au><au>Cai, Weiwei</au><au>Zhou, Wenhua</au><au>Li, Na</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revolutionizing automated pear picking using Mamba architecture</atitle><jtitle>Plant methods</jtitle><addtitle>Plant Methods</addtitle><date>2024-11-04</date><risdate>2024</risdate><volume>20</volume><issue>1</issue><spage>167</spage><epage>167</epage><pages>167-167</pages><artnum>167</artnum><issn>1746-4811</issn><eissn>1746-4811</eissn><abstract>With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in current Transformer architectures. The proposed network, named SRSMamba, employs a Reward and Punishment Mechanism (RPM) to focus on important information while minimizing redundancy interference. It utilizes 3D Selective Scan (SS3D) to extend scanning dimensions and integrates global information across channel dimensions, thereby enhancing the model's robustness in complex agricultural environments and effectively adapting to the extraction of complex features in pear orchards and farmlands. Additionally, a Stacked Feature Pyramid Network (SFPN) is introduced to enhance semantic information during the feature fusion stage, particularly improving the detection capability for small targets. Experimental results show that SRSMamba has a low parameter count of 21.1 M, GFLOPs of 50.4, mAP of 72.0%, mAP50 reaching 94.8%, mAP75 at 68.1%, and FPS at 26.9. Compared with other state-of-the-art (SOTA) object detection methods, it achieves a good trade-off between model efficiency and detection accuracy.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39497167</pmid><doi>10.1186/s13007-024-01287-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1746-4811
ispartof Plant methods, 2024-11, Vol.20 (1), p.167-167, Article 167
issn 1746-4811
1746-4811
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0b3231c6fade44ac887874454b9a8ced
source Publicly Available Content (ProQuest); PubMed Central
subjects Agricultural
Automation
Electric transformers
Environmental aspects
FPN
Harvesting
Machine vision
Mechanization
Methodology
Neural networks
Pear
Pear picking
pears
Small targets
Technology application
Transformer
vision
Vmamba
title Revolutionizing automated pear picking using Mamba architecture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revolutionizing%20automated%20pear%20picking%20using%20Mamba%20architecture&rft.jtitle=Plant%20methods&rft.au=Zhao,%20Peirui&rft.date=2024-11-04&rft.volume=20&rft.issue=1&rft.spage=167&rft.epage=167&rft.pages=167-167&rft.artnum=167&rft.issn=1746-4811&rft.eissn=1746-4811&rft_id=info:doi/10.1186/s13007-024-01287-z&rft_dat=%3Cgale_doaj_%3EA814877055%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-281992f4e8c60b0019134d1cc4c907bdf67c4c7c63f8faafb1e4b8a2db41923a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3124126708&rft_id=info:pmid/39497167&rft_galeid=A814877055&rfr_iscdi=true