Loading…

Mathematical Modeling of Water-Soluble Astaxanthin Release from Binary Polysaccharide/Gelatin Blend Matrices

Water-soluble AstaSana astaxanthin (AST) was loaded into 75/25 blend films made of polysaccharides (carboxymethyl cellulose (CMC), gum Arabic (GAR), starch sodium octenyl succinate (OSA), water-soluble soy polysaccharides (WSSP)) and gelatin (GEL) at levels of 0.25, 0.5, and 1%, respectively. Due to...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and interfaces 2021-09, Vol.5 (3), p.41
Main Authors: Łupina, Katarzyna, Kowalczyk, Dariusz, Skrzypek, Tomasz, Baraniak, Barbara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3
cites cdi_FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3
container_end_page
container_issue 3
container_start_page 41
container_title Colloids and interfaces
container_volume 5
creator Łupina, Katarzyna
Kowalczyk, Dariusz
Skrzypek, Tomasz
Baraniak, Barbara
description Water-soluble AstaSana astaxanthin (AST) was loaded into 75/25 blend films made of polysaccharides (carboxymethyl cellulose (CMC), gum Arabic (GAR), starch sodium octenyl succinate (OSA), water-soluble soy polysaccharides (WSSP)) and gelatin (GEL) at levels of 0.25, 0.5, and 1%, respectively. Due to the presence of starch granules in the AST formulation, the supplemented films exhibited increased surface roughness as compared to the AST-free films. Apart from the CMC/GEL carrier, the migration of AST to water (25 °C, 32 h) was incomplete. Excluding the CMC-based carrier, the gradual rise in the AST concentration decreased the release rate. The Hopfenberg with time lag model provided the best fit for all release series data. Based on the quarter-release times (t25%), the 0.25% AST-supplemented OSA/GEL film (t25% = 13.34 h) ensured a 1.9, 2.2, and 148.2 slower release compared to the GAR-, WSSP- and CMC-based carriers, respectively. According to the Korsmeyer–Peppas model, the CMC-based films offered a quasi-Fickian release of AST (n < 0.5) with the burst effect (t100% = 0.5–1 h). In general, the release of AST from the other films was multi-mechanistic (n > 0.5), i.e., controlled at least by Fickian diffusion and the polymer relaxation (erosion) mechanism. The 1% AST-added WSSP/GEL system provided the most linear release profile.
doi_str_mv 10.3390/colloids5030041
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0b3edf0d6cae451ea8c5d31fe1024052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0b3edf0d6cae451ea8c5d31fe1024052</doaj_id><sourcerecordid>2576386541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxRdRULRnrwHPa5PNJpseVbQKFsUPPIZpMrEp6aYmW9D_3mhFxNMMw-P33mOq6pjRU84ndGxiCNHbLCintGU71UEjaFsL3nW7f_b9apTzklLaKCElUwdVmMGwwBUM3kAgs2gx-P6VREdeYMBUP8awmQckZ3mAd-iHhe_JAwaEjMSluCLnvof0Qe5j-MhgzAKStzieYijInpwH7C0pHskbzEfVnoOQcfQzD6vnq8uni-v69m56c3F2WxtO5VBP0DCJoLA1rGsME1I1Tk4sm3BlwCAyhQilhBCqU4xyzpB3DRfzuVPOWH5Y3Wy5NsJSr5NflYg6gtffh5heNaTSOKCmc47WUSsNYCtYcTXCcuaQ0aaloimsky1rneLbBvOgl3GT-hJfN6KTXEnRsqIab1UmxZwTul9XRvXXh_S_D_FPqmSGWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576386541</pqid></control><display><type>article</type><title>Mathematical Modeling of Water-Soluble Astaxanthin Release from Binary Polysaccharide/Gelatin Blend Matrices</title><source>Publicly Available Content Database</source><creator>Łupina, Katarzyna ; Kowalczyk, Dariusz ; Skrzypek, Tomasz ; Baraniak, Barbara</creator><creatorcontrib>Łupina, Katarzyna ; Kowalczyk, Dariusz ; Skrzypek, Tomasz ; Baraniak, Barbara</creatorcontrib><description>Water-soluble AstaSana astaxanthin (AST) was loaded into 75/25 blend films made of polysaccharides (carboxymethyl cellulose (CMC), gum Arabic (GAR), starch sodium octenyl succinate (OSA), water-soluble soy polysaccharides (WSSP)) and gelatin (GEL) at levels of 0.25, 0.5, and 1%, respectively. Due to the presence of starch granules in the AST formulation, the supplemented films exhibited increased surface roughness as compared to the AST-free films. Apart from the CMC/GEL carrier, the migration of AST to water (25 °C, 32 h) was incomplete. Excluding the CMC-based carrier, the gradual rise in the AST concentration decreased the release rate. The Hopfenberg with time lag model provided the best fit for all release series data. Based on the quarter-release times (t25%), the 0.25% AST-supplemented OSA/GEL film (t25% = 13.34 h) ensured a 1.9, 2.2, and 148.2 slower release compared to the GAR-, WSSP- and CMC-based carriers, respectively. According to the Korsmeyer–Peppas model, the CMC-based films offered a quasi-Fickian release of AST (n &lt; 0.5) with the burst effect (t100% = 0.5–1 h). In general, the release of AST from the other films was multi-mechanistic (n &gt; 0.5), i.e., controlled at least by Fickian diffusion and the polymer relaxation (erosion) mechanism. The 1% AST-added WSSP/GEL system provided the most linear release profile.</description><identifier>ISSN: 2504-5377</identifier><identifier>EISSN: 2504-5377</identifier><identifier>DOI: 10.3390/colloids5030041</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antioxidants ; Aqueous solutions ; Astaxanthin ; Biopolymers ; Carboxymethyl cellulose ; Cellulose ; edible films ; Food ; Gelatin ; Glycerol ; gum Arabic ; Mathematical analysis ; Mathematical models ; octenyl succinic anhydride starch ; Polysaccharides ; Scanning electron microscopy ; Sodium ; Software ; Surface roughness ; Time lag ; Water chemistry ; water-soluble soy polysaccharides</subject><ispartof>Colloids and interfaces, 2021-09, Vol.5 (3), p.41</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3</citedby><cites>FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3</cites><orcidid>0000-0002-5523-6219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576386541/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576386541?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Łupina, Katarzyna</creatorcontrib><creatorcontrib>Kowalczyk, Dariusz</creatorcontrib><creatorcontrib>Skrzypek, Tomasz</creatorcontrib><creatorcontrib>Baraniak, Barbara</creatorcontrib><title>Mathematical Modeling of Water-Soluble Astaxanthin Release from Binary Polysaccharide/Gelatin Blend Matrices</title><title>Colloids and interfaces</title><description>Water-soluble AstaSana astaxanthin (AST) was loaded into 75/25 blend films made of polysaccharides (carboxymethyl cellulose (CMC), gum Arabic (GAR), starch sodium octenyl succinate (OSA), water-soluble soy polysaccharides (WSSP)) and gelatin (GEL) at levels of 0.25, 0.5, and 1%, respectively. Due to the presence of starch granules in the AST formulation, the supplemented films exhibited increased surface roughness as compared to the AST-free films. Apart from the CMC/GEL carrier, the migration of AST to water (25 °C, 32 h) was incomplete. Excluding the CMC-based carrier, the gradual rise in the AST concentration decreased the release rate. The Hopfenberg with time lag model provided the best fit for all release series data. Based on the quarter-release times (t25%), the 0.25% AST-supplemented OSA/GEL film (t25% = 13.34 h) ensured a 1.9, 2.2, and 148.2 slower release compared to the GAR-, WSSP- and CMC-based carriers, respectively. According to the Korsmeyer–Peppas model, the CMC-based films offered a quasi-Fickian release of AST (n &lt; 0.5) with the burst effect (t100% = 0.5–1 h). In general, the release of AST from the other films was multi-mechanistic (n &gt; 0.5), i.e., controlled at least by Fickian diffusion and the polymer relaxation (erosion) mechanism. The 1% AST-added WSSP/GEL system provided the most linear release profile.</description><subject>Antioxidants</subject><subject>Aqueous solutions</subject><subject>Astaxanthin</subject><subject>Biopolymers</subject><subject>Carboxymethyl cellulose</subject><subject>Cellulose</subject><subject>edible films</subject><subject>Food</subject><subject>Gelatin</subject><subject>Glycerol</subject><subject>gum Arabic</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>octenyl succinic anhydride starch</subject><subject>Polysaccharides</subject><subject>Scanning electron microscopy</subject><subject>Sodium</subject><subject>Software</subject><subject>Surface roughness</subject><subject>Time lag</subject><subject>Water chemistry</subject><subject>water-soluble soy polysaccharides</subject><issn>2504-5377</issn><issn>2504-5377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1LAzEQxRdRULRnrwHPa5PNJpseVbQKFsUPPIZpMrEp6aYmW9D_3mhFxNMMw-P33mOq6pjRU84ndGxiCNHbLCintGU71UEjaFsL3nW7f_b9apTzklLaKCElUwdVmMGwwBUM3kAgs2gx-P6VREdeYMBUP8awmQckZ3mAd-iHhe_JAwaEjMSluCLnvof0Qe5j-MhgzAKStzieYijInpwH7C0pHskbzEfVnoOQcfQzD6vnq8uni-v69m56c3F2WxtO5VBP0DCJoLA1rGsME1I1Tk4sm3BlwCAyhQilhBCqU4xyzpB3DRfzuVPOWH5Y3Wy5NsJSr5NflYg6gtffh5heNaTSOKCmc47WUSsNYCtYcTXCcuaQ0aaloimsky1rneLbBvOgl3GT-hJfN6KTXEnRsqIab1UmxZwTul9XRvXXh_S_D_FPqmSGWA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Łupina, Katarzyna</creator><creator>Kowalczyk, Dariusz</creator><creator>Skrzypek, Tomasz</creator><creator>Baraniak, Barbara</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5523-6219</orcidid></search><sort><creationdate>20210901</creationdate><title>Mathematical Modeling of Water-Soluble Astaxanthin Release from Binary Polysaccharide/Gelatin Blend Matrices</title><author>Łupina, Katarzyna ; Kowalczyk, Dariusz ; Skrzypek, Tomasz ; Baraniak, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antioxidants</topic><topic>Aqueous solutions</topic><topic>Astaxanthin</topic><topic>Biopolymers</topic><topic>Carboxymethyl cellulose</topic><topic>Cellulose</topic><topic>edible films</topic><topic>Food</topic><topic>Gelatin</topic><topic>Glycerol</topic><topic>gum Arabic</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>octenyl succinic anhydride starch</topic><topic>Polysaccharides</topic><topic>Scanning electron microscopy</topic><topic>Sodium</topic><topic>Software</topic><topic>Surface roughness</topic><topic>Time lag</topic><topic>Water chemistry</topic><topic>water-soluble soy polysaccharides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Łupina, Katarzyna</creatorcontrib><creatorcontrib>Kowalczyk, Dariusz</creatorcontrib><creatorcontrib>Skrzypek, Tomasz</creatorcontrib><creatorcontrib>Baraniak, Barbara</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Colloids and interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Łupina, Katarzyna</au><au>Kowalczyk, Dariusz</au><au>Skrzypek, Tomasz</au><au>Baraniak, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of Water-Soluble Astaxanthin Release from Binary Polysaccharide/Gelatin Blend Matrices</atitle><jtitle>Colloids and interfaces</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>5</volume><issue>3</issue><spage>41</spage><pages>41-</pages><issn>2504-5377</issn><eissn>2504-5377</eissn><abstract>Water-soluble AstaSana astaxanthin (AST) was loaded into 75/25 blend films made of polysaccharides (carboxymethyl cellulose (CMC), gum Arabic (GAR), starch sodium octenyl succinate (OSA), water-soluble soy polysaccharides (WSSP)) and gelatin (GEL) at levels of 0.25, 0.5, and 1%, respectively. Due to the presence of starch granules in the AST formulation, the supplemented films exhibited increased surface roughness as compared to the AST-free films. Apart from the CMC/GEL carrier, the migration of AST to water (25 °C, 32 h) was incomplete. Excluding the CMC-based carrier, the gradual rise in the AST concentration decreased the release rate. The Hopfenberg with time lag model provided the best fit for all release series data. Based on the quarter-release times (t25%), the 0.25% AST-supplemented OSA/GEL film (t25% = 13.34 h) ensured a 1.9, 2.2, and 148.2 slower release compared to the GAR-, WSSP- and CMC-based carriers, respectively. According to the Korsmeyer–Peppas model, the CMC-based films offered a quasi-Fickian release of AST (n &lt; 0.5) with the burst effect (t100% = 0.5–1 h). In general, the release of AST from the other films was multi-mechanistic (n &gt; 0.5), i.e., controlled at least by Fickian diffusion and the polymer relaxation (erosion) mechanism. The 1% AST-added WSSP/GEL system provided the most linear release profile.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/colloids5030041</doi><orcidid>https://orcid.org/0000-0002-5523-6219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-5377
ispartof Colloids and interfaces, 2021-09, Vol.5 (3), p.41
issn 2504-5377
2504-5377
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0b3edf0d6cae451ea8c5d31fe1024052
source Publicly Available Content Database
subjects Antioxidants
Aqueous solutions
Astaxanthin
Biopolymers
Carboxymethyl cellulose
Cellulose
edible films
Food
Gelatin
Glycerol
gum Arabic
Mathematical analysis
Mathematical models
octenyl succinic anhydride starch
Polysaccharides
Scanning electron microscopy
Sodium
Software
Surface roughness
Time lag
Water chemistry
water-soluble soy polysaccharides
title Mathematical Modeling of Water-Soluble Astaxanthin Release from Binary Polysaccharide/Gelatin Blend Matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20Water-Soluble%20Astaxanthin%20Release%20from%20Binary%20Polysaccharide/Gelatin%20Blend%20Matrices&rft.jtitle=Colloids%20and%20interfaces&rft.au=%C5%81upina,%20Katarzyna&rft.date=2021-09-01&rft.volume=5&rft.issue=3&rft.spage=41&rft.pages=41-&rft.issn=2504-5377&rft.eissn=2504-5377&rft_id=info:doi/10.3390/colloids5030041&rft_dat=%3Cproquest_doaj_%3E2576386541%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576386541&rft_id=info:pmid/&rfr_iscdi=true