Loading…
Mathematical Modeling of Water-Soluble Astaxanthin Release from Binary Polysaccharide/Gelatin Blend Matrices
Water-soluble AstaSana astaxanthin (AST) was loaded into 75/25 blend films made of polysaccharides (carboxymethyl cellulose (CMC), gum Arabic (GAR), starch sodium octenyl succinate (OSA), water-soluble soy polysaccharides (WSSP)) and gelatin (GEL) at levels of 0.25, 0.5, and 1%, respectively. Due to...
Saved in:
Published in: | Colloids and interfaces 2021-09, Vol.5 (3), p.41 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3 |
container_end_page | |
container_issue | 3 |
container_start_page | 41 |
container_title | Colloids and interfaces |
container_volume | 5 |
creator | Łupina, Katarzyna Kowalczyk, Dariusz Skrzypek, Tomasz Baraniak, Barbara |
description | Water-soluble AstaSana astaxanthin (AST) was loaded into 75/25 blend films made of polysaccharides (carboxymethyl cellulose (CMC), gum Arabic (GAR), starch sodium octenyl succinate (OSA), water-soluble soy polysaccharides (WSSP)) and gelatin (GEL) at levels of 0.25, 0.5, and 1%, respectively. Due to the presence of starch granules in the AST formulation, the supplemented films exhibited increased surface roughness as compared to the AST-free films. Apart from the CMC/GEL carrier, the migration of AST to water (25 °C, 32 h) was incomplete. Excluding the CMC-based carrier, the gradual rise in the AST concentration decreased the release rate. The Hopfenberg with time lag model provided the best fit for all release series data. Based on the quarter-release times (t25%), the 0.25% AST-supplemented OSA/GEL film (t25% = 13.34 h) ensured a 1.9, 2.2, and 148.2 slower release compared to the GAR-, WSSP- and CMC-based carriers, respectively. According to the Korsmeyer–Peppas model, the CMC-based films offered a quasi-Fickian release of AST (n < 0.5) with the burst effect (t100% = 0.5–1 h). In general, the release of AST from the other films was multi-mechanistic (n > 0.5), i.e., controlled at least by Fickian diffusion and the polymer relaxation (erosion) mechanism. The 1% AST-added WSSP/GEL system provided the most linear release profile. |
doi_str_mv | 10.3390/colloids5030041 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0b3edf0d6cae451ea8c5d31fe1024052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0b3edf0d6cae451ea8c5d31fe1024052</doaj_id><sourcerecordid>2576386541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxRdRULRnrwHPa5PNJpseVbQKFsUPPIZpMrEp6aYmW9D_3mhFxNMMw-P33mOq6pjRU84ndGxiCNHbLCintGU71UEjaFsL3nW7f_b9apTzklLaKCElUwdVmMGwwBUM3kAgs2gx-P6VREdeYMBUP8awmQckZ3mAd-iHhe_JAwaEjMSluCLnvof0Qe5j-MhgzAKStzieYijInpwH7C0pHskbzEfVnoOQcfQzD6vnq8uni-v69m56c3F2WxtO5VBP0DCJoLA1rGsME1I1Tk4sm3BlwCAyhQilhBCqU4xyzpB3DRfzuVPOWH5Y3Wy5NsJSr5NflYg6gtffh5heNaTSOKCmc47WUSsNYCtYcTXCcuaQ0aaloimsky1rneLbBvOgl3GT-hJfN6KTXEnRsqIab1UmxZwTul9XRvXXh_S_D_FPqmSGWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576386541</pqid></control><display><type>article</type><title>Mathematical Modeling of Water-Soluble Astaxanthin Release from Binary Polysaccharide/Gelatin Blend Matrices</title><source>Publicly Available Content Database</source><creator>Łupina, Katarzyna ; Kowalczyk, Dariusz ; Skrzypek, Tomasz ; Baraniak, Barbara</creator><creatorcontrib>Łupina, Katarzyna ; Kowalczyk, Dariusz ; Skrzypek, Tomasz ; Baraniak, Barbara</creatorcontrib><description>Water-soluble AstaSana astaxanthin (AST) was loaded into 75/25 blend films made of polysaccharides (carboxymethyl cellulose (CMC), gum Arabic (GAR), starch sodium octenyl succinate (OSA), water-soluble soy polysaccharides (WSSP)) and gelatin (GEL) at levels of 0.25, 0.5, and 1%, respectively. Due to the presence of starch granules in the AST formulation, the supplemented films exhibited increased surface roughness as compared to the AST-free films. Apart from the CMC/GEL carrier, the migration of AST to water (25 °C, 32 h) was incomplete. Excluding the CMC-based carrier, the gradual rise in the AST concentration decreased the release rate. The Hopfenberg with time lag model provided the best fit for all release series data. Based on the quarter-release times (t25%), the 0.25% AST-supplemented OSA/GEL film (t25% = 13.34 h) ensured a 1.9, 2.2, and 148.2 slower release compared to the GAR-, WSSP- and CMC-based carriers, respectively. According to the Korsmeyer–Peppas model, the CMC-based films offered a quasi-Fickian release of AST (n < 0.5) with the burst effect (t100% = 0.5–1 h). In general, the release of AST from the other films was multi-mechanistic (n > 0.5), i.e., controlled at least by Fickian diffusion and the polymer relaxation (erosion) mechanism. The 1% AST-added WSSP/GEL system provided the most linear release profile.</description><identifier>ISSN: 2504-5377</identifier><identifier>EISSN: 2504-5377</identifier><identifier>DOI: 10.3390/colloids5030041</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antioxidants ; Aqueous solutions ; Astaxanthin ; Biopolymers ; Carboxymethyl cellulose ; Cellulose ; edible films ; Food ; Gelatin ; Glycerol ; gum Arabic ; Mathematical analysis ; Mathematical models ; octenyl succinic anhydride starch ; Polysaccharides ; Scanning electron microscopy ; Sodium ; Software ; Surface roughness ; Time lag ; Water chemistry ; water-soluble soy polysaccharides</subject><ispartof>Colloids and interfaces, 2021-09, Vol.5 (3), p.41</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3</citedby><cites>FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3</cites><orcidid>0000-0002-5523-6219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576386541/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576386541?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Łupina, Katarzyna</creatorcontrib><creatorcontrib>Kowalczyk, Dariusz</creatorcontrib><creatorcontrib>Skrzypek, Tomasz</creatorcontrib><creatorcontrib>Baraniak, Barbara</creatorcontrib><title>Mathematical Modeling of Water-Soluble Astaxanthin Release from Binary Polysaccharide/Gelatin Blend Matrices</title><title>Colloids and interfaces</title><description>Water-soluble AstaSana astaxanthin (AST) was loaded into 75/25 blend films made of polysaccharides (carboxymethyl cellulose (CMC), gum Arabic (GAR), starch sodium octenyl succinate (OSA), water-soluble soy polysaccharides (WSSP)) and gelatin (GEL) at levels of 0.25, 0.5, and 1%, respectively. Due to the presence of starch granules in the AST formulation, the supplemented films exhibited increased surface roughness as compared to the AST-free films. Apart from the CMC/GEL carrier, the migration of AST to water (25 °C, 32 h) was incomplete. Excluding the CMC-based carrier, the gradual rise in the AST concentration decreased the release rate. The Hopfenberg with time lag model provided the best fit for all release series data. Based on the quarter-release times (t25%), the 0.25% AST-supplemented OSA/GEL film (t25% = 13.34 h) ensured a 1.9, 2.2, and 148.2 slower release compared to the GAR-, WSSP- and CMC-based carriers, respectively. According to the Korsmeyer–Peppas model, the CMC-based films offered a quasi-Fickian release of AST (n < 0.5) with the burst effect (t100% = 0.5–1 h). In general, the release of AST from the other films was multi-mechanistic (n > 0.5), i.e., controlled at least by Fickian diffusion and the polymer relaxation (erosion) mechanism. The 1% AST-added WSSP/GEL system provided the most linear release profile.</description><subject>Antioxidants</subject><subject>Aqueous solutions</subject><subject>Astaxanthin</subject><subject>Biopolymers</subject><subject>Carboxymethyl cellulose</subject><subject>Cellulose</subject><subject>edible films</subject><subject>Food</subject><subject>Gelatin</subject><subject>Glycerol</subject><subject>gum Arabic</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>octenyl succinic anhydride starch</subject><subject>Polysaccharides</subject><subject>Scanning electron microscopy</subject><subject>Sodium</subject><subject>Software</subject><subject>Surface roughness</subject><subject>Time lag</subject><subject>Water chemistry</subject><subject>water-soluble soy polysaccharides</subject><issn>2504-5377</issn><issn>2504-5377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1LAzEQxRdRULRnrwHPa5PNJpseVbQKFsUPPIZpMrEp6aYmW9D_3mhFxNMMw-P33mOq6pjRU84ndGxiCNHbLCintGU71UEjaFsL3nW7f_b9apTzklLaKCElUwdVmMGwwBUM3kAgs2gx-P6VREdeYMBUP8awmQckZ3mAd-iHhe_JAwaEjMSluCLnvof0Qe5j-MhgzAKStzieYijInpwH7C0pHskbzEfVnoOQcfQzD6vnq8uni-v69m56c3F2WxtO5VBP0DCJoLA1rGsME1I1Tk4sm3BlwCAyhQilhBCqU4xyzpB3DRfzuVPOWH5Y3Wy5NsJSr5NflYg6gtffh5heNaTSOKCmc47WUSsNYCtYcTXCcuaQ0aaloimsky1rneLbBvOgl3GT-hJfN6KTXEnRsqIab1UmxZwTul9XRvXXh_S_D_FPqmSGWA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Łupina, Katarzyna</creator><creator>Kowalczyk, Dariusz</creator><creator>Skrzypek, Tomasz</creator><creator>Baraniak, Barbara</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5523-6219</orcidid></search><sort><creationdate>20210901</creationdate><title>Mathematical Modeling of Water-Soluble Astaxanthin Release from Binary Polysaccharide/Gelatin Blend Matrices</title><author>Łupina, Katarzyna ; Kowalczyk, Dariusz ; Skrzypek, Tomasz ; Baraniak, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antioxidants</topic><topic>Aqueous solutions</topic><topic>Astaxanthin</topic><topic>Biopolymers</topic><topic>Carboxymethyl cellulose</topic><topic>Cellulose</topic><topic>edible films</topic><topic>Food</topic><topic>Gelatin</topic><topic>Glycerol</topic><topic>gum Arabic</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>octenyl succinic anhydride starch</topic><topic>Polysaccharides</topic><topic>Scanning electron microscopy</topic><topic>Sodium</topic><topic>Software</topic><topic>Surface roughness</topic><topic>Time lag</topic><topic>Water chemistry</topic><topic>water-soluble soy polysaccharides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Łupina, Katarzyna</creatorcontrib><creatorcontrib>Kowalczyk, Dariusz</creatorcontrib><creatorcontrib>Skrzypek, Tomasz</creatorcontrib><creatorcontrib>Baraniak, Barbara</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Colloids and interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Łupina, Katarzyna</au><au>Kowalczyk, Dariusz</au><au>Skrzypek, Tomasz</au><au>Baraniak, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of Water-Soluble Astaxanthin Release from Binary Polysaccharide/Gelatin Blend Matrices</atitle><jtitle>Colloids and interfaces</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>5</volume><issue>3</issue><spage>41</spage><pages>41-</pages><issn>2504-5377</issn><eissn>2504-5377</eissn><abstract>Water-soluble AstaSana astaxanthin (AST) was loaded into 75/25 blend films made of polysaccharides (carboxymethyl cellulose (CMC), gum Arabic (GAR), starch sodium octenyl succinate (OSA), water-soluble soy polysaccharides (WSSP)) and gelatin (GEL) at levels of 0.25, 0.5, and 1%, respectively. Due to the presence of starch granules in the AST formulation, the supplemented films exhibited increased surface roughness as compared to the AST-free films. Apart from the CMC/GEL carrier, the migration of AST to water (25 °C, 32 h) was incomplete. Excluding the CMC-based carrier, the gradual rise in the AST concentration decreased the release rate. The Hopfenberg with time lag model provided the best fit for all release series data. Based on the quarter-release times (t25%), the 0.25% AST-supplemented OSA/GEL film (t25% = 13.34 h) ensured a 1.9, 2.2, and 148.2 slower release compared to the GAR-, WSSP- and CMC-based carriers, respectively. According to the Korsmeyer–Peppas model, the CMC-based films offered a quasi-Fickian release of AST (n < 0.5) with the burst effect (t100% = 0.5–1 h). In general, the release of AST from the other films was multi-mechanistic (n > 0.5), i.e., controlled at least by Fickian diffusion and the polymer relaxation (erosion) mechanism. The 1% AST-added WSSP/GEL system provided the most linear release profile.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/colloids5030041</doi><orcidid>https://orcid.org/0000-0002-5523-6219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-5377 |
ispartof | Colloids and interfaces, 2021-09, Vol.5 (3), p.41 |
issn | 2504-5377 2504-5377 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0b3edf0d6cae451ea8c5d31fe1024052 |
source | Publicly Available Content Database |
subjects | Antioxidants Aqueous solutions Astaxanthin Biopolymers Carboxymethyl cellulose Cellulose edible films Food Gelatin Glycerol gum Arabic Mathematical analysis Mathematical models octenyl succinic anhydride starch Polysaccharides Scanning electron microscopy Sodium Software Surface roughness Time lag Water chemistry water-soluble soy polysaccharides |
title | Mathematical Modeling of Water-Soluble Astaxanthin Release from Binary Polysaccharide/Gelatin Blend Matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20Water-Soluble%20Astaxanthin%20Release%20from%20Binary%20Polysaccharide/Gelatin%20Blend%20Matrices&rft.jtitle=Colloids%20and%20interfaces&rft.au=%C5%81upina,%20Katarzyna&rft.date=2021-09-01&rft.volume=5&rft.issue=3&rft.spage=41&rft.pages=41-&rft.issn=2504-5377&rft.eissn=2504-5377&rft_id=info:doi/10.3390/colloids5030041&rft_dat=%3Cproquest_doaj_%3E2576386541%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-9ec16ea8e4c172c15682f69d1938cacee18eea0025587810331e37235bbf8fcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576386541&rft_id=info:pmid/&rfr_iscdi=true |