Loading…

Molecular docking, simulation and binding free energy analysis of small molecules as PfHT1 inhibitors

Antimalarial drug resistance has thrown a spanner in the works of malaria elimination. New drugs are required for ancillary support of existing malaria control efforts. Plasmodium falciparum requires host glucose for survival and proliferation. On this basis, P. falciparum hexose transporter 1 (PfHT...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-08, Vol.17 (8), p.e0268269-e0268269
Main Authors: Owoloye, Afolabi J, Ligali, Funmilayo C, Enejoh, Ojochenemi A, Musa, Adesola Z, Aina, Oluwagbemiga, Idowu, Emmanuel T, Oyebola, Kolapo M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antimalarial drug resistance has thrown a spanner in the works of malaria elimination. New drugs are required for ancillary support of existing malaria control efforts. Plasmodium falciparum requires host glucose for survival and proliferation. On this basis, P. falciparum hexose transporter 1 (PfHT1) protein involved in hexose permeation is considered a potential drug target. In this study, we tested the antimalarial activity of some compounds against PfHT1 using computational techniques. We performed high throughput virtual screening of 21,352 small-molecule compounds against PfHT1. The stability of the lead compound complexes was evaluated via molecular dynamics (MD) simulation for 100 nanoseconds. We also investigated the pharmacodynamic, pharmacokinetic and physiological characteristics of the compounds in accordance with Lipinksi rules for drug-likeness to bind and inhibit PfHT1. Molecular docking and free binding energy analyses were carried out using Molecular Mechanics with Generalized Born and Surface Area (MMGBSA) solvation to determine the selectivity of the hit compounds for PfHT1 over the human glucose transporter (hGLUT1) orthologue. Five important PfHT1 inhibitors were identified: Hyperoside (CID5281643); avicularin (CID5490064); sylibin (CID5213); harpagoside (CID5481542) and quercetagetin (CID5281680). The compounds formed intermolecular interaction with the binding pocket of the PfHT1 target via conserved amino acid residues (Val314, Gly183, Thr49, Asn52, Gly183, Ser315, Ser317, and Asn48). The MMGBSA analysis of the complexes yielded high free binding energies. Four (CID5281643, CID5490064, CID5213, and CID5481542) of the identified compounds were found to be stable within the PfHT1 binding pocket throughout the 100 nanoseconds simulation run time. The four compounds demonstrated higher affinity for PfHT1 than the human major glucose transporter (hGLUT1). This investigation demonstrates the inhibition potential of sylibin, hyperoside, harpagoside, and avicularin against PfHT1 receptor. Robust preclinical investigations are required to validate the chemotherapeutic properties of the identified compounds.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0268269