Loading…
Impact of Ag Coating Thickness on the Electrochemical Behavior of Super Duplex Stainless Steel SAF2507 for Enhanced Li-Ion Battery Cases
Li-ion batteries are at risk of explosions caused by fires, primarily because of the high energy density of Li ions, which raises the temperature. Battery cases are typically made of plastic, aluminum, or SAF30400. Although plastic and aluminum aid weight reduction, their strength and melting points...
Saved in:
Published in: | Crystals (Basel) 2025-01, Vol.15 (1), p.62 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c217t-ea70a98e825ec1baa0a59bbfec0865ff2f802f3c4dd485a04ab34d70c25b052b3 |
container_end_page | |
container_issue | 1 |
container_start_page | 62 |
container_title | Crystals (Basel) |
container_volume | 15 |
creator | Jo, Hyeongho Ok, Jung-Woo Lee, Yoon-Seok Lee, Sanghun Je, Yonghun Kim, Shinho Kim, Seongjun Park, Jinyong Hong, Jonggi Lee, Taekyu Shin, Byung-Hyun Yoon, Jang-Hee Kim, Yangdo |
description | Li-ion batteries are at risk of explosions caused by fires, primarily because of the high energy density of Li ions, which raises the temperature. Battery cases are typically made of plastic, aluminum, or SAF30400. Although plastic and aluminum aid weight reduction, their strength and melting points are low. SAF30400 offers excellent strength and corrosion resistance but suffers from work hardening and low high-temperature strength at 700 °C. Additionally, Ni used for plating has a low current density of 25% international copper alloy standard (ICAS). SAF2507 is suitable for use as a Li-ion battery case material because of its excellent strength and corrosion resistance. However, the heterogeneous microstructure of SAF2507 after casting and processing decreases the corrosion resistance, so it requires solution heat treatment. To address these issues, in this study, SAF2507 (780 MPa, 30%) is solution heat-treated at 1100 °C after casting and coated with Ag (ICAS 108.4%) using physical vapor deposition (PVD). Ag is applied at five different thicknesses: 0.5, 1.0, 1.5, 2.0, and 2.5 μm. The surface conditions and electrochemical properties are then examined for each coating thickness. The results indicate that the PVD-coated surface forms a uniform Ag layer, with electrical conductivity increasing from 1.9% ICAS to 72.3% ICAS depending on the Ag coating thickness. This enhancement in conductivity can improve Li-ion battery safety on charge and use. This result is expected to aid the development of advanced Li-ion battery systems in the future. |
doi_str_mv | 10.3390/cryst15010062 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0b54fc6a64ef4504b31dba69244117ac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0b54fc6a64ef4504b31dba69244117ac</doaj_id><sourcerecordid>3159486134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-ea70a98e825ec1baa0a59bbfec0865ff2f802f3c4dd485a04ab34d70c25b052b3</originalsourceid><addsrcrecordid>eNpVkU1r20AQhkVooSHJsfeFntXOfunj6LhOYjD04PQsRqtZax1Zq-6uS_0P8rMj16W0c5lheN9nBt4s-8jhs5Q1fDHhFBPXwAEKcZVdCyhlrqQW7_6ZP2R3Me5hrrKAsuTX2ev6MKFJzFu22LGlx-TGHXvunXkZKUbmR5Z6YquBTAre9HRwBgd2Tz3-dD6cfdvjRIF9PU4D_WLbhG4czs5tIhrYdvEgNJTMztrV2ONoqGMbl69n8D2mROHElhgp3mbvLQ6R7v70m-z7w-p5-ZRvvj2ul4tNbgQvU05YAtYVVUKT4S0ioK7b1pKBqtDWCluBsNKorlOVRlDYStWVYIRuQYtW3mTrC7fzuG-m4A4YTo1H1_xe-LBrMCRnBmqg1cqaAgtFVmlQreRdi0UtlOK8RDOzPl1YU_A_jhRTs_fHMM7vN5LrWlUFl2pW5ReVCT7GQPbvVQ7NObvmv-zkG1NbjJ0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159486134</pqid></control><display><type>article</type><title>Impact of Ag Coating Thickness on the Electrochemical Behavior of Super Duplex Stainless Steel SAF2507 for Enhanced Li-Ion Battery Cases</title><source>Publicly Available Content (ProQuest)</source><creator>Jo, Hyeongho ; Ok, Jung-Woo ; Lee, Yoon-Seok ; Lee, Sanghun ; Je, Yonghun ; Kim, Shinho ; Kim, Seongjun ; Park, Jinyong ; Hong, Jonggi ; Lee, Taekyu ; Shin, Byung-Hyun ; Yoon, Jang-Hee ; Kim, Yangdo</creator><creatorcontrib>Jo, Hyeongho ; Ok, Jung-Woo ; Lee, Yoon-Seok ; Lee, Sanghun ; Je, Yonghun ; Kim, Shinho ; Kim, Seongjun ; Park, Jinyong ; Hong, Jonggi ; Lee, Taekyu ; Shin, Byung-Hyun ; Yoon, Jang-Hee ; Kim, Yangdo</creatorcontrib><description>Li-ion batteries are at risk of explosions caused by fires, primarily because of the high energy density of Li ions, which raises the temperature. Battery cases are typically made of plastic, aluminum, or SAF30400. Although plastic and aluminum aid weight reduction, their strength and melting points are low. SAF30400 offers excellent strength and corrosion resistance but suffers from work hardening and low high-temperature strength at 700 °C. Additionally, Ni used for plating has a low current density of 25% international copper alloy standard (ICAS). SAF2507 is suitable for use as a Li-ion battery case material because of its excellent strength and corrosion resistance. However, the heterogeneous microstructure of SAF2507 after casting and processing decreases the corrosion resistance, so it requires solution heat treatment. To address these issues, in this study, SAF2507 (780 MPa, 30%) is solution heat-treated at 1100 °C after casting and coated with Ag (ICAS 108.4%) using physical vapor deposition (PVD). Ag is applied at five different thicknesses: 0.5, 1.0, 1.5, 2.0, and 2.5 μm. The surface conditions and electrochemical properties are then examined for each coating thickness. The results indicate that the PVD-coated surface forms a uniform Ag layer, with electrical conductivity increasing from 1.9% ICAS to 72.3% ICAS depending on the Ag coating thickness. This enhancement in conductivity can improve Li-ion battery safety on charge and use. This result is expected to aid the development of advanced Li-ion battery systems in the future.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst15010062</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ag coating ; Alloys ; Aluminum ; Aluminum alloys ; Batteries ; Coating ; Copper base alloys ; Copper plating ; Corrosion resistance ; Corrosion tests ; Duplex stainless steels ; Electrical resistivity ; Electrochemical analysis ; electrochemical behavior ; Electrodes ; Electrolytes ; Explosions ; High temperature ; Li-ion battery case ; Lithium-ion batteries ; Low currents ; Melting points ; Physical vapor deposition ; Recycling ; Research methodology ; Silver ; Solution heat treatment ; Stainless steel ; super duplex stainless steel ; Thickness ; Weight reduction ; Work hardening</subject><ispartof>Crystals (Basel), 2025-01, Vol.15 (1), p.62</ispartof><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-ea70a98e825ec1baa0a59bbfec0865ff2f802f3c4dd485a04ab34d70c25b052b3</cites><orcidid>0000-0002-8895-0232 ; 0000-0002-8494-9373 ; 0000-0002-8792-2360 ; 0000-0002-9662-1156 ; 0000-0002-1957-427X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3159486134/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3159486134?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Jo, Hyeongho</creatorcontrib><creatorcontrib>Ok, Jung-Woo</creatorcontrib><creatorcontrib>Lee, Yoon-Seok</creatorcontrib><creatorcontrib>Lee, Sanghun</creatorcontrib><creatorcontrib>Je, Yonghun</creatorcontrib><creatorcontrib>Kim, Shinho</creatorcontrib><creatorcontrib>Kim, Seongjun</creatorcontrib><creatorcontrib>Park, Jinyong</creatorcontrib><creatorcontrib>Hong, Jonggi</creatorcontrib><creatorcontrib>Lee, Taekyu</creatorcontrib><creatorcontrib>Shin, Byung-Hyun</creatorcontrib><creatorcontrib>Yoon, Jang-Hee</creatorcontrib><creatorcontrib>Kim, Yangdo</creatorcontrib><title>Impact of Ag Coating Thickness on the Electrochemical Behavior of Super Duplex Stainless Steel SAF2507 for Enhanced Li-Ion Battery Cases</title><title>Crystals (Basel)</title><description>Li-ion batteries are at risk of explosions caused by fires, primarily because of the high energy density of Li ions, which raises the temperature. Battery cases are typically made of plastic, aluminum, or SAF30400. Although plastic and aluminum aid weight reduction, their strength and melting points are low. SAF30400 offers excellent strength and corrosion resistance but suffers from work hardening and low high-temperature strength at 700 °C. Additionally, Ni used for plating has a low current density of 25% international copper alloy standard (ICAS). SAF2507 is suitable for use as a Li-ion battery case material because of its excellent strength and corrosion resistance. However, the heterogeneous microstructure of SAF2507 after casting and processing decreases the corrosion resistance, so it requires solution heat treatment. To address these issues, in this study, SAF2507 (780 MPa, 30%) is solution heat-treated at 1100 °C after casting and coated with Ag (ICAS 108.4%) using physical vapor deposition (PVD). Ag is applied at five different thicknesses: 0.5, 1.0, 1.5, 2.0, and 2.5 μm. The surface conditions and electrochemical properties are then examined for each coating thickness. The results indicate that the PVD-coated surface forms a uniform Ag layer, with electrical conductivity increasing from 1.9% ICAS to 72.3% ICAS depending on the Ag coating thickness. This enhancement in conductivity can improve Li-ion battery safety on charge and use. This result is expected to aid the development of advanced Li-ion battery systems in the future.</description><subject>Ag coating</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Batteries</subject><subject>Coating</subject><subject>Copper base alloys</subject><subject>Copper plating</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Duplex stainless steels</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>electrochemical behavior</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Explosions</subject><subject>High temperature</subject><subject>Li-ion battery case</subject><subject>Lithium-ion batteries</subject><subject>Low currents</subject><subject>Melting points</subject><subject>Physical vapor deposition</subject><subject>Recycling</subject><subject>Research methodology</subject><subject>Silver</subject><subject>Solution heat treatment</subject><subject>Stainless steel</subject><subject>super duplex stainless steel</subject><subject>Thickness</subject><subject>Weight reduction</subject><subject>Work hardening</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1r20AQhkVooSHJsfeFntXOfunj6LhOYjD04PQsRqtZax1Zq-6uS_0P8rMj16W0c5lheN9nBt4s-8jhs5Q1fDHhFBPXwAEKcZVdCyhlrqQW7_6ZP2R3Me5hrrKAsuTX2ev6MKFJzFu22LGlx-TGHXvunXkZKUbmR5Z6YquBTAre9HRwBgd2Tz3-dD6cfdvjRIF9PU4D_WLbhG4czs5tIhrYdvEgNJTMztrV2ONoqGMbl69n8D2mROHElhgp3mbvLQ6R7v70m-z7w-p5-ZRvvj2ul4tNbgQvU05YAtYVVUKT4S0ioK7b1pKBqtDWCluBsNKorlOVRlDYStWVYIRuQYtW3mTrC7fzuG-m4A4YTo1H1_xe-LBrMCRnBmqg1cqaAgtFVmlQreRdi0UtlOK8RDOzPl1YU_A_jhRTs_fHMM7vN5LrWlUFl2pW5ReVCT7GQPbvVQ7NObvmv-zkG1NbjJ0</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Jo, Hyeongho</creator><creator>Ok, Jung-Woo</creator><creator>Lee, Yoon-Seok</creator><creator>Lee, Sanghun</creator><creator>Je, Yonghun</creator><creator>Kim, Shinho</creator><creator>Kim, Seongjun</creator><creator>Park, Jinyong</creator><creator>Hong, Jonggi</creator><creator>Lee, Taekyu</creator><creator>Shin, Byung-Hyun</creator><creator>Yoon, Jang-Hee</creator><creator>Kim, Yangdo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8895-0232</orcidid><orcidid>https://orcid.org/0000-0002-8494-9373</orcidid><orcidid>https://orcid.org/0000-0002-8792-2360</orcidid><orcidid>https://orcid.org/0000-0002-9662-1156</orcidid><orcidid>https://orcid.org/0000-0002-1957-427X</orcidid></search><sort><creationdate>20250101</creationdate><title>Impact of Ag Coating Thickness on the Electrochemical Behavior of Super Duplex Stainless Steel SAF2507 for Enhanced Li-Ion Battery Cases</title><author>Jo, Hyeongho ; Ok, Jung-Woo ; Lee, Yoon-Seok ; Lee, Sanghun ; Je, Yonghun ; Kim, Shinho ; Kim, Seongjun ; Park, Jinyong ; Hong, Jonggi ; Lee, Taekyu ; Shin, Byung-Hyun ; Yoon, Jang-Hee ; Kim, Yangdo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-ea70a98e825ec1baa0a59bbfec0865ff2f802f3c4dd485a04ab34d70c25b052b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Ag coating</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Batteries</topic><topic>Coating</topic><topic>Copper base alloys</topic><topic>Copper plating</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Duplex stainless steels</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>electrochemical behavior</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Explosions</topic><topic>High temperature</topic><topic>Li-ion battery case</topic><topic>Lithium-ion batteries</topic><topic>Low currents</topic><topic>Melting points</topic><topic>Physical vapor deposition</topic><topic>Recycling</topic><topic>Research methodology</topic><topic>Silver</topic><topic>Solution heat treatment</topic><topic>Stainless steel</topic><topic>super duplex stainless steel</topic><topic>Thickness</topic><topic>Weight reduction</topic><topic>Work hardening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Hyeongho</creatorcontrib><creatorcontrib>Ok, Jung-Woo</creatorcontrib><creatorcontrib>Lee, Yoon-Seok</creatorcontrib><creatorcontrib>Lee, Sanghun</creatorcontrib><creatorcontrib>Je, Yonghun</creatorcontrib><creatorcontrib>Kim, Shinho</creatorcontrib><creatorcontrib>Kim, Seongjun</creatorcontrib><creatorcontrib>Park, Jinyong</creatorcontrib><creatorcontrib>Hong, Jonggi</creatorcontrib><creatorcontrib>Lee, Taekyu</creatorcontrib><creatorcontrib>Shin, Byung-Hyun</creatorcontrib><creatorcontrib>Yoon, Jang-Hee</creatorcontrib><creatorcontrib>Kim, Yangdo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Hyeongho</au><au>Ok, Jung-Woo</au><au>Lee, Yoon-Seok</au><au>Lee, Sanghun</au><au>Je, Yonghun</au><au>Kim, Shinho</au><au>Kim, Seongjun</au><au>Park, Jinyong</au><au>Hong, Jonggi</au><au>Lee, Taekyu</au><au>Shin, Byung-Hyun</au><au>Yoon, Jang-Hee</au><au>Kim, Yangdo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Ag Coating Thickness on the Electrochemical Behavior of Super Duplex Stainless Steel SAF2507 for Enhanced Li-Ion Battery Cases</atitle><jtitle>Crystals (Basel)</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>15</volume><issue>1</issue><spage>62</spage><pages>62-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>Li-ion batteries are at risk of explosions caused by fires, primarily because of the high energy density of Li ions, which raises the temperature. Battery cases are typically made of plastic, aluminum, or SAF30400. Although plastic and aluminum aid weight reduction, their strength and melting points are low. SAF30400 offers excellent strength and corrosion resistance but suffers from work hardening and low high-temperature strength at 700 °C. Additionally, Ni used for plating has a low current density of 25% international copper alloy standard (ICAS). SAF2507 is suitable for use as a Li-ion battery case material because of its excellent strength and corrosion resistance. However, the heterogeneous microstructure of SAF2507 after casting and processing decreases the corrosion resistance, so it requires solution heat treatment. To address these issues, in this study, SAF2507 (780 MPa, 30%) is solution heat-treated at 1100 °C after casting and coated with Ag (ICAS 108.4%) using physical vapor deposition (PVD). Ag is applied at five different thicknesses: 0.5, 1.0, 1.5, 2.0, and 2.5 μm. The surface conditions and electrochemical properties are then examined for each coating thickness. The results indicate that the PVD-coated surface forms a uniform Ag layer, with electrical conductivity increasing from 1.9% ICAS to 72.3% ICAS depending on the Ag coating thickness. This enhancement in conductivity can improve Li-ion battery safety on charge and use. This result is expected to aid the development of advanced Li-ion battery systems in the future.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst15010062</doi><orcidid>https://orcid.org/0000-0002-8895-0232</orcidid><orcidid>https://orcid.org/0000-0002-8494-9373</orcidid><orcidid>https://orcid.org/0000-0002-8792-2360</orcidid><orcidid>https://orcid.org/0000-0002-9662-1156</orcidid><orcidid>https://orcid.org/0000-0002-1957-427X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4352 |
ispartof | Crystals (Basel), 2025-01, Vol.15 (1), p.62 |
issn | 2073-4352 2073-4352 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0b54fc6a64ef4504b31dba69244117ac |
source | Publicly Available Content (ProQuest) |
subjects | Ag coating Alloys Aluminum Aluminum alloys Batteries Coating Copper base alloys Copper plating Corrosion resistance Corrosion tests Duplex stainless steels Electrical resistivity Electrochemical analysis electrochemical behavior Electrodes Electrolytes Explosions High temperature Li-ion battery case Lithium-ion batteries Low currents Melting points Physical vapor deposition Recycling Research methodology Silver Solution heat treatment Stainless steel super duplex stainless steel Thickness Weight reduction Work hardening |
title | Impact of Ag Coating Thickness on the Electrochemical Behavior of Super Duplex Stainless Steel SAF2507 for Enhanced Li-Ion Battery Cases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Ag%20Coating%20Thickness%20on%20the%20Electrochemical%20Behavior%20of%20Super%20Duplex%20Stainless%20Steel%20SAF2507%20for%20Enhanced%20Li-Ion%20Battery%20Cases&rft.jtitle=Crystals%20(Basel)&rft.au=Jo,%20Hyeongho&rft.date=2025-01-01&rft.volume=15&rft.issue=1&rft.spage=62&rft.pages=62-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst15010062&rft_dat=%3Cproquest_doaj_%3E3159486134%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c217t-ea70a98e825ec1baa0a59bbfec0865ff2f802f3c4dd485a04ab34d70c25b052b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3159486134&rft_id=info:pmid/&rfr_iscdi=true |