Loading…
An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow
Optimal power flow (OPF) objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established...
Saved in:
Published in: | Energies (Basel) 2015, Vol.8 (4), p.2412-2437 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3 |
container_end_page | 2437 |
container_issue | 4 |
container_start_page | 2412 |
container_title | Energies (Basel) |
container_volume | 8 |
creator | He, Xuanhu Wang, Wei Jiang, Jiuchun Xu, Lijie |
description | Optimal power flow (OPF) objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC) algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable. |
doi_str_mv | 10.3390/en8042412 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0b78b9271ef342c3baad51e3e8360bd5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0b78b9271ef342c3baad51e3e8360bd5</doaj_id><sourcerecordid>3667423991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3</originalsourceid><addsrcrecordid>eNqNkUGPFCEQhTtGEzfrHvwHJF700Apd0N0c24m7TrJmPOiZAF2sTJimBWY3--9lHLMxnqwLBXn5eFWvaV4z-h5A0g-4jJR3nHXPmgsmZd8yOsDzv_qXzVXOe1oLgAHARYPTQraHNcV7nMmUinfeeh3IR0SyiSEuj2QKdzH58uNA9DKTbclkWtfgrS4-LqRE8uUYim93Zo-2-Hsku7X4Q2V8jQ-YyHWID6-aF06HjFd_zsvm-_Wnb5vP7e3uZruZbltbbZfWWQtonQbnRm65oYb30FM6a2tmQDELToVEQXm9I9LOSGmQj53gvZPOwGWzPXPnqPdqTdVGelRRe_X7IaY7peuMNqCiZhiN7AaGDnhnwWg9C4aAY_3RzKKy3p5ZdTk_j5iLOvhsMQS9YDxmxQbej5JTKf9DykYpBIcT9c0_0n08pqUuRbF-6FkNhp-A784qm2LOCd3TLIyqU9TqKWr4BbnpmnU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676103349</pqid></control><display><type>article</type><title>An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow</title><source>Publicly Available Content Database</source><creator>He, Xuanhu ; Wang, Wei ; Jiang, Jiuchun ; Xu, Lijie</creator><creatorcontrib>He, Xuanhu ; Wang, Wei ; Jiang, Jiuchun ; Xu, Lijie</creatorcontrib><description>Optimal power flow (OPF) objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC) algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en8042412</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; artificial bee colony algorithm ; Costs ; Crossovers ; differential evolution algorithm ; Fuzzy ; Fuzzy logic ; fuzzy satisfaction-maximizing method ; Fuzzy set theory ; Heuristic ; Linear programming ; Mathematical models ; Minimization ; Mutation ; optimal power flow ; Optimization ; Optimization algorithms ; tent chaos mapping ; Test systems</subject><ispartof>Energies (Basel), 2015, Vol.8 (4), p.2412-2437</ispartof><rights>Copyright MDPI AG 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3</citedby><cites>FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1676103349/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1676103349?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>He, Xuanhu</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Jiang, Jiuchun</creatorcontrib><creatorcontrib>Xu, Lijie</creatorcontrib><title>An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow</title><title>Energies (Basel)</title><description>Optimal power flow (OPF) objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC) algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.</description><subject>Algorithms</subject><subject>artificial bee colony algorithm</subject><subject>Costs</subject><subject>Crossovers</subject><subject>differential evolution algorithm</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>fuzzy satisfaction-maximizing method</subject><subject>Fuzzy set theory</subject><subject>Heuristic</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Minimization</subject><subject>Mutation</subject><subject>optimal power flow</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>tent chaos mapping</subject><subject>Test systems</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUGPFCEQhTtGEzfrHvwHJF700Apd0N0c24m7TrJmPOiZAF2sTJimBWY3--9lHLMxnqwLBXn5eFWvaV4z-h5A0g-4jJR3nHXPmgsmZd8yOsDzv_qXzVXOe1oLgAHARYPTQraHNcV7nMmUinfeeh3IR0SyiSEuj2QKdzH58uNA9DKTbclkWtfgrS4-LqRE8uUYim93Zo-2-Hsku7X4Q2V8jQ-YyHWID6-aF06HjFd_zsvm-_Wnb5vP7e3uZruZbltbbZfWWQtonQbnRm65oYb30FM6a2tmQDELToVEQXm9I9LOSGmQj53gvZPOwGWzPXPnqPdqTdVGelRRe_X7IaY7peuMNqCiZhiN7AaGDnhnwWg9C4aAY_3RzKKy3p5ZdTk_j5iLOvhsMQS9YDxmxQbej5JTKf9DykYpBIcT9c0_0n08pqUuRbF-6FkNhp-A784qm2LOCd3TLIyqU9TqKWr4BbnpmnU</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>He, Xuanhu</creator><creator>Wang, Wei</creator><creator>Jiang, Jiuchun</creator><creator>Xu, Lijie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7TV</scope><scope>C1K</scope><scope>DOA</scope></search><sort><creationdate>2015</creationdate><title>An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow</title><author>He, Xuanhu ; Wang, Wei ; Jiang, Jiuchun ; Xu, Lijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>artificial bee colony algorithm</topic><topic>Costs</topic><topic>Crossovers</topic><topic>differential evolution algorithm</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>fuzzy satisfaction-maximizing method</topic><topic>Fuzzy set theory</topic><topic>Heuristic</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Minimization</topic><topic>Mutation</topic><topic>optimal power flow</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>tent chaos mapping</topic><topic>Test systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xuanhu</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Jiang, Jiuchun</creatorcontrib><creatorcontrib>Xu, Lijie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xuanhu</au><au>Wang, Wei</au><au>Jiang, Jiuchun</au><au>Xu, Lijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow</atitle><jtitle>Energies (Basel)</jtitle><date>2015</date><risdate>2015</risdate><volume>8</volume><issue>4</issue><spage>2412</spage><epage>2437</epage><pages>2412-2437</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Optimal power flow (OPF) objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC) algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en8042412</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2015, Vol.8 (4), p.2412-2437 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0b78b9271ef342c3baad51e3e8360bd5 |
source | Publicly Available Content Database |
subjects | Algorithms artificial bee colony algorithm Costs Crossovers differential evolution algorithm Fuzzy Fuzzy logic fuzzy satisfaction-maximizing method Fuzzy set theory Heuristic Linear programming Mathematical models Minimization Mutation optimal power flow Optimization Optimization algorithms tent chaos mapping Test systems |
title | An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Artificial%20Bee%20Colony%20Algorithm%20and%20Its%20Application%20to%20Multi-Objective%20Optimal%20Power%20Flow&rft.jtitle=Energies%20(Basel)&rft.au=He,%20Xuanhu&rft.date=2015&rft.volume=8&rft.issue=4&rft.spage=2412&rft.epage=2437&rft.pages=2412-2437&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en8042412&rft_dat=%3Cproquest_doaj_%3E3667423991%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1676103349&rft_id=info:pmid/&rfr_iscdi=true |