Loading…

An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow

Optimal power flow (OPF) objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2015, Vol.8 (4), p.2412-2437
Main Authors: He, Xuanhu, Wang, Wei, Jiang, Jiuchun, Xu, Lijie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3
cites cdi_FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3
container_end_page 2437
container_issue 4
container_start_page 2412
container_title Energies (Basel)
container_volume 8
creator He, Xuanhu
Wang, Wei
Jiang, Jiuchun
Xu, Lijie
description Optimal power flow (OPF) objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC) algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.
doi_str_mv 10.3390/en8042412
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0b78b9271ef342c3baad51e3e8360bd5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0b78b9271ef342c3baad51e3e8360bd5</doaj_id><sourcerecordid>3667423991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3</originalsourceid><addsrcrecordid>eNqNkUGPFCEQhTtGEzfrHvwHJF700Apd0N0c24m7TrJmPOiZAF2sTJimBWY3--9lHLMxnqwLBXn5eFWvaV4z-h5A0g-4jJR3nHXPmgsmZd8yOsDzv_qXzVXOe1oLgAHARYPTQraHNcV7nMmUinfeeh3IR0SyiSEuj2QKdzH58uNA9DKTbclkWtfgrS4-LqRE8uUYim93Zo-2-Hsku7X4Q2V8jQ-YyHWID6-aF06HjFd_zsvm-_Wnb5vP7e3uZruZbltbbZfWWQtonQbnRm65oYb30FM6a2tmQDELToVEQXm9I9LOSGmQj53gvZPOwGWzPXPnqPdqTdVGelRRe_X7IaY7peuMNqCiZhiN7AaGDnhnwWg9C4aAY_3RzKKy3p5ZdTk_j5iLOvhsMQS9YDxmxQbej5JTKf9DykYpBIcT9c0_0n08pqUuRbF-6FkNhp-A784qm2LOCd3TLIyqU9TqKWr4BbnpmnU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676103349</pqid></control><display><type>article</type><title>An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow</title><source>Publicly Available Content Database</source><creator>He, Xuanhu ; Wang, Wei ; Jiang, Jiuchun ; Xu, Lijie</creator><creatorcontrib>He, Xuanhu ; Wang, Wei ; Jiang, Jiuchun ; Xu, Lijie</creatorcontrib><description>Optimal power flow (OPF) objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC) algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en8042412</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; artificial bee colony algorithm ; Costs ; Crossovers ; differential evolution algorithm ; Fuzzy ; Fuzzy logic ; fuzzy satisfaction-maximizing method ; Fuzzy set theory ; Heuristic ; Linear programming ; Mathematical models ; Minimization ; Mutation ; optimal power flow ; Optimization ; Optimization algorithms ; tent chaos mapping ; Test systems</subject><ispartof>Energies (Basel), 2015, Vol.8 (4), p.2412-2437</ispartof><rights>Copyright MDPI AG 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3</citedby><cites>FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1676103349/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1676103349?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>He, Xuanhu</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Jiang, Jiuchun</creatorcontrib><creatorcontrib>Xu, Lijie</creatorcontrib><title>An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow</title><title>Energies (Basel)</title><description>Optimal power flow (OPF) objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC) algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.</description><subject>Algorithms</subject><subject>artificial bee colony algorithm</subject><subject>Costs</subject><subject>Crossovers</subject><subject>differential evolution algorithm</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>fuzzy satisfaction-maximizing method</subject><subject>Fuzzy set theory</subject><subject>Heuristic</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Minimization</subject><subject>Mutation</subject><subject>optimal power flow</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>tent chaos mapping</subject><subject>Test systems</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUGPFCEQhTtGEzfrHvwHJF700Apd0N0c24m7TrJmPOiZAF2sTJimBWY3--9lHLMxnqwLBXn5eFWvaV4z-h5A0g-4jJR3nHXPmgsmZd8yOsDzv_qXzVXOe1oLgAHARYPTQraHNcV7nMmUinfeeh3IR0SyiSEuj2QKdzH58uNA9DKTbclkWtfgrS4-LqRE8uUYim93Zo-2-Hsku7X4Q2V8jQ-YyHWID6-aF06HjFd_zsvm-_Wnb5vP7e3uZruZbltbbZfWWQtonQbnRm65oYb30FM6a2tmQDELToVEQXm9I9LOSGmQj53gvZPOwGWzPXPnqPdqTdVGelRRe_X7IaY7peuMNqCiZhiN7AaGDnhnwWg9C4aAY_3RzKKy3p5ZdTk_j5iLOvhsMQS9YDxmxQbej5JTKf9DykYpBIcT9c0_0n08pqUuRbF-6FkNhp-A784qm2LOCd3TLIyqU9TqKWr4BbnpmnU</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>He, Xuanhu</creator><creator>Wang, Wei</creator><creator>Jiang, Jiuchun</creator><creator>Xu, Lijie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7TV</scope><scope>C1K</scope><scope>DOA</scope></search><sort><creationdate>2015</creationdate><title>An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow</title><author>He, Xuanhu ; Wang, Wei ; Jiang, Jiuchun ; Xu, Lijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>artificial bee colony algorithm</topic><topic>Costs</topic><topic>Crossovers</topic><topic>differential evolution algorithm</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>fuzzy satisfaction-maximizing method</topic><topic>Fuzzy set theory</topic><topic>Heuristic</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Minimization</topic><topic>Mutation</topic><topic>optimal power flow</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>tent chaos mapping</topic><topic>Test systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xuanhu</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Jiang, Jiuchun</creatorcontrib><creatorcontrib>Xu, Lijie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xuanhu</au><au>Wang, Wei</au><au>Jiang, Jiuchun</au><au>Xu, Lijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow</atitle><jtitle>Energies (Basel)</jtitle><date>2015</date><risdate>2015</risdate><volume>8</volume><issue>4</issue><spage>2412</spage><epage>2437</epage><pages>2412-2437</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Optimal power flow (OPF) objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC) algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en8042412</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2015, Vol.8 (4), p.2412-2437
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0b78b9271ef342c3baad51e3e8360bd5
source Publicly Available Content Database
subjects Algorithms
artificial bee colony algorithm
Costs
Crossovers
differential evolution algorithm
Fuzzy
Fuzzy logic
fuzzy satisfaction-maximizing method
Fuzzy set theory
Heuristic
Linear programming
Mathematical models
Minimization
Mutation
optimal power flow
Optimization
Optimization algorithms
tent chaos mapping
Test systems
title An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Artificial%20Bee%20Colony%20Algorithm%20and%20Its%20Application%20to%20Multi-Objective%20Optimal%20Power%20Flow&rft.jtitle=Energies%20(Basel)&rft.au=He,%20Xuanhu&rft.date=2015&rft.volume=8&rft.issue=4&rft.spage=2412&rft.epage=2437&rft.pages=2412-2437&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en8042412&rft_dat=%3Cproquest_doaj_%3E3667423991%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-fcc3ecfa3ff84c4b0b463600dacbd3e5d54059e504cbdee02b99be482546f9fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1676103349&rft_id=info:pmid/&rfr_iscdi=true