Loading…

Unraveling the Antibacterial Mechanism of Plasma-Activated Lactic Acid against Pseudomonas ludensis by Untargeted Metabolomics

Plasma-activated liquid is a novel non-thermal antibacterial agent against a wide spectrum of foodborne bacteria, yet fewer studies focused on its disinfection of meat spoilage bacteria. In this study, the antibacterial properties of plasma-activated lactic acid (PALA) on isolated and identified fro...

Full description

Saved in:
Bibliographic Details
Published in:Foods 2023-04, Vol.12 (8), p.1605
Main Authors: Wang, Zhaobin, Wang, Xiaoting, Sheng, Xiaowei, Zhao, Luling, Qian, Jing, Zhang, Jianhao, Wang, Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plasma-activated liquid is a novel non-thermal antibacterial agent against a wide spectrum of foodborne bacteria, yet fewer studies focused on its disinfection of meat spoilage bacteria. In this study, the antibacterial properties of plasma-activated lactic acid (PALA) on isolated and identified from spoilage beef, were investigated. A plasma jet was used to treat lactic acid (0.05-0.20%) for 60-120 s. The results presented that the 0.2% LA solution treated with plasma for 120 s caused a 5.64 log reduction. Additionally, the surface morphology, membrane integrity and permeability were altered slightly and verified by scanning electron microscopy, double staining of SYTO-9 and propidium iodide, and a K test kit. The intracellular organization of the cells, observed by transmission electron microscopy, was damaged significantly. Increased intracellular reactive oxygen species (ROS) levels exceeded the antioxidant ability of glutathione (GSH), leading to a reduction in the activity of malate dehydrogenase (MDH), succinic dehydrogenase (SDH) and intracellular ATP levels. Metabolomics analysis indicated that the energy and synthesis of essential components, such as DNA and amino acid-related metabolic pathways, were disturbed. In conclusion, this research established a theoretical basis for the use of PALA in refrigerated beef preservation by shedding light on the bacteriostatic effect of PALA against .
ISSN:2304-8158
2304-8158
DOI:10.3390/foods12081605