Loading…

Flock Size Predicts Niche Breadth and Focal Wintering Regions for a Rapidly Declining Boreal-Breeding Passerine, the Rusty Blackbird

Once exceptionally abundant, the Rusty Blackbird (Euphagus carolinus) has declined precipitously over at least the last century. The species breeds across the Boreal forest, where it is so thinly distributed across such remote areas that it is extremely challenging to monitor or research, hindering...

Full description

Saved in:
Bibliographic Details
Published in:Diversity (Basel) 2021-02, Vol.13 (2), p.62
Main Authors: Evans, Brian S., Powell, Luke L., Demarest, Dean W., Borchert, Sinéad M., Greenberg, Russell S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-5e4f43c2f188dda427df1cbbe1dc18dbe992e1a98b21fa91fefffe507328989d3
cites cdi_FETCH-LOGICAL-c358t-5e4f43c2f188dda427df1cbbe1dc18dbe992e1a98b21fa91fefffe507328989d3
container_end_page
container_issue 2
container_start_page 62
container_title Diversity (Basel)
container_volume 13
creator Evans, Brian S.
Powell, Luke L.
Demarest, Dean W.
Borchert, Sinéad M.
Greenberg, Russell S.
description Once exceptionally abundant, the Rusty Blackbird (Euphagus carolinus) has declined precipitously over at least the last century. The species breeds across the Boreal forest, where it is so thinly distributed across such remote areas that it is extremely challenging to monitor or research, hindering informed conservation. As such, we employed a targeted citizen science effort on the species’ wintering grounds in the more (human) populated southeast United States: the Rusty Blackbird Winter Blitz. Using a MaxEnt machine learning framework, we modeled patterns of occurrence of small, medium, and large flocks (99 individuals, respectively) in environmental space using both Blitz and eBird data. Our primary objective was to determine environmental variables that best predict Rusty Blackbird occurrence, with emphasis on (1) examining differences in key environmental predictors across flock sizes, (2) testing whether environmental niche breadth decreased with flock size, and (3) identifying regions with higher predicted occurrence (hotspots). The distribution of flocks varied across environmental predictors, with average minimum temperature (~2 °C for medium and large flocks) and proportional coverage of floodplain forest having the largest influence on occurrence. Environmental niche breadth decreased with increasing flock size, suggesting an increasingly restrictive range of environmental conditions capable of supporting larger flocks. We identified large hotspots in floodplain forests in the Lower Mississippi Alluvial Valley, the South Atlantic Coastal Plain, and the Black Belt Prairie.
doi_str_mv 10.3390/d13020062
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0b9f9e2e5aa54e43bfa08693df4f15a9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0b9f9e2e5aa54e43bfa08693df4f15a9</doaj_id><sourcerecordid>2487525871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5e4f43c2f188dda427df1cbbe1dc18dbe992e1a98b21fa91fefffe507328989d3</originalsourceid><addsrcrecordid>eNpNkU1PGzEQhlcVSAXaQ_-BpZ6Quq0_WftIKGmREKDQqkdr1h4Hh-06tTeH9MwPx2kqxGm-3veZkaZpPjD6WQhDv3gmKKf0jL9pjpjksuWa6YNX-dvmuJRVVRjVdUfN03xI7pHcx79I7jL66KZCbqJ7QDLLCH56IDB6Mk8OBvIrjhPmOC7JApcxjYWElAmQBayjH7bkK7ohjrv5LFXz0FZERdb6DkrZOfETmSp6sSnTlswGcI99zP5dcxhgKPj-fzxpfs4vf1x8b69vv11dnF-3Tig9tQplkMLxwLT2HiTvfGCu75F5x7Tv0RiODIzuOQtgWMAQAiraCa6NNl6cNFd7rk-wsuscf0Pe2gTR_mukvLSQp-gGtLQ3wSBHBaAkStEHoPrMCB9kYApMZX3cs9Y5_dlgmewqbfJYz7dc6k5xpTtWVad7lcuplIzhZSujdvcw-_Iw8Qw1GIkG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487525871</pqid></control><display><type>article</type><title>Flock Size Predicts Niche Breadth and Focal Wintering Regions for a Rapidly Declining Boreal-Breeding Passerine, the Rusty Blackbird</title><source>Publicly Available Content Database</source><creator>Evans, Brian S. ; Powell, Luke L. ; Demarest, Dean W. ; Borchert, Sinéad M. ; Greenberg, Russell S.</creator><creatorcontrib>Evans, Brian S. ; Powell, Luke L. ; Demarest, Dean W. ; Borchert, Sinéad M. ; Greenberg, Russell S.</creatorcontrib><description>Once exceptionally abundant, the Rusty Blackbird (Euphagus carolinus) has declined precipitously over at least the last century. The species breeds across the Boreal forest, where it is so thinly distributed across such remote areas that it is extremely challenging to monitor or research, hindering informed conservation. As such, we employed a targeted citizen science effort on the species’ wintering grounds in the more (human) populated southeast United States: the Rusty Blackbird Winter Blitz. Using a MaxEnt machine learning framework, we modeled patterns of occurrence of small, medium, and large flocks (&lt;20, 20–99, and &gt;99 individuals, respectively) in environmental space using both Blitz and eBird data. Our primary objective was to determine environmental variables that best predict Rusty Blackbird occurrence, with emphasis on (1) examining differences in key environmental predictors across flock sizes, (2) testing whether environmental niche breadth decreased with flock size, and (3) identifying regions with higher predicted occurrence (hotspots). The distribution of flocks varied across environmental predictors, with average minimum temperature (~2 °C for medium and large flocks) and proportional coverage of floodplain forest having the largest influence on occurrence. Environmental niche breadth decreased with increasing flock size, suggesting an increasingly restrictive range of environmental conditions capable of supporting larger flocks. We identified large hotspots in floodplain forests in the Lower Mississippi Alluvial Valley, the South Atlantic Coastal Plain, and the Black Belt Prairie.</description><identifier>ISSN: 1424-2818</identifier><identifier>EISSN: 1424-2818</identifier><identifier>DOI: 10.3390/d13020062</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alluvial plains ; Alluvial valleys ; Animal behavior ; Birds ; Black Belt Prairie ; Boreal forests ; citizen science ; Coastal plains ; conservation ; Environmental conditions ; Environmental testing ; Euphagus carolinus ; Floodplains ; Group size ; Habitats ; Hypotheses ; Learning algorithms ; Machine learning ; Niche breadth ; niche modeling ; Population ; Remote monitoring</subject><ispartof>Diversity (Basel), 2021-02, Vol.13 (2), p.62</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-5e4f43c2f188dda427df1cbbe1dc18dbe992e1a98b21fa91fefffe507328989d3</citedby><cites>FETCH-LOGICAL-c358t-5e4f43c2f188dda427df1cbbe1dc18dbe992e1a98b21fa91fefffe507328989d3</cites><orcidid>0000-0002-2001-4982 ; 0000-0001-6081-1794 ; 0000-0002-6665-7115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2487525871/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2487525871?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Evans, Brian S.</creatorcontrib><creatorcontrib>Powell, Luke L.</creatorcontrib><creatorcontrib>Demarest, Dean W.</creatorcontrib><creatorcontrib>Borchert, Sinéad M.</creatorcontrib><creatorcontrib>Greenberg, Russell S.</creatorcontrib><title>Flock Size Predicts Niche Breadth and Focal Wintering Regions for a Rapidly Declining Boreal-Breeding Passerine, the Rusty Blackbird</title><title>Diversity (Basel)</title><description>Once exceptionally abundant, the Rusty Blackbird (Euphagus carolinus) has declined precipitously over at least the last century. The species breeds across the Boreal forest, where it is so thinly distributed across such remote areas that it is extremely challenging to monitor or research, hindering informed conservation. As such, we employed a targeted citizen science effort on the species’ wintering grounds in the more (human) populated southeast United States: the Rusty Blackbird Winter Blitz. Using a MaxEnt machine learning framework, we modeled patterns of occurrence of small, medium, and large flocks (&lt;20, 20–99, and &gt;99 individuals, respectively) in environmental space using both Blitz and eBird data. Our primary objective was to determine environmental variables that best predict Rusty Blackbird occurrence, with emphasis on (1) examining differences in key environmental predictors across flock sizes, (2) testing whether environmental niche breadth decreased with flock size, and (3) identifying regions with higher predicted occurrence (hotspots). The distribution of flocks varied across environmental predictors, with average minimum temperature (~2 °C for medium and large flocks) and proportional coverage of floodplain forest having the largest influence on occurrence. Environmental niche breadth decreased with increasing flock size, suggesting an increasingly restrictive range of environmental conditions capable of supporting larger flocks. We identified large hotspots in floodplain forests in the Lower Mississippi Alluvial Valley, the South Atlantic Coastal Plain, and the Black Belt Prairie.</description><subject>Alluvial plains</subject><subject>Alluvial valleys</subject><subject>Animal behavior</subject><subject>Birds</subject><subject>Black Belt Prairie</subject><subject>Boreal forests</subject><subject>citizen science</subject><subject>Coastal plains</subject><subject>conservation</subject><subject>Environmental conditions</subject><subject>Environmental testing</subject><subject>Euphagus carolinus</subject><subject>Floodplains</subject><subject>Group size</subject><subject>Habitats</subject><subject>Hypotheses</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Niche breadth</subject><subject>niche modeling</subject><subject>Population</subject><subject>Remote monitoring</subject><issn>1424-2818</issn><issn>1424-2818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PGzEQhlcVSAXaQ_-BpZ6Quq0_WftIKGmREKDQqkdr1h4Hh-06tTeH9MwPx2kqxGm-3veZkaZpPjD6WQhDv3gmKKf0jL9pjpjksuWa6YNX-dvmuJRVVRjVdUfN03xI7pHcx79I7jL66KZCbqJ7QDLLCH56IDB6Mk8OBvIrjhPmOC7JApcxjYWElAmQBayjH7bkK7ohjrv5LFXz0FZERdb6DkrZOfETmSp6sSnTlswGcI99zP5dcxhgKPj-fzxpfs4vf1x8b69vv11dnF-3Tig9tQplkMLxwLT2HiTvfGCu75F5x7Tv0RiODIzuOQtgWMAQAiraCa6NNl6cNFd7rk-wsuscf0Pe2gTR_mukvLSQp-gGtLQ3wSBHBaAkStEHoPrMCB9kYApMZX3cs9Y5_dlgmewqbfJYz7dc6k5xpTtWVad7lcuplIzhZSujdvcw-_Iw8Qw1GIkG</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Evans, Brian S.</creator><creator>Powell, Luke L.</creator><creator>Demarest, Dean W.</creator><creator>Borchert, Sinéad M.</creator><creator>Greenberg, Russell S.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2001-4982</orcidid><orcidid>https://orcid.org/0000-0001-6081-1794</orcidid><orcidid>https://orcid.org/0000-0002-6665-7115</orcidid></search><sort><creationdate>20210201</creationdate><title>Flock Size Predicts Niche Breadth and Focal Wintering Regions for a Rapidly Declining Boreal-Breeding Passerine, the Rusty Blackbird</title><author>Evans, Brian S. ; Powell, Luke L. ; Demarest, Dean W. ; Borchert, Sinéad M. ; Greenberg, Russell S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5e4f43c2f188dda427df1cbbe1dc18dbe992e1a98b21fa91fefffe507328989d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alluvial plains</topic><topic>Alluvial valleys</topic><topic>Animal behavior</topic><topic>Birds</topic><topic>Black Belt Prairie</topic><topic>Boreal forests</topic><topic>citizen science</topic><topic>Coastal plains</topic><topic>conservation</topic><topic>Environmental conditions</topic><topic>Environmental testing</topic><topic>Euphagus carolinus</topic><topic>Floodplains</topic><topic>Group size</topic><topic>Habitats</topic><topic>Hypotheses</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Niche breadth</topic><topic>niche modeling</topic><topic>Population</topic><topic>Remote monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Brian S.</creatorcontrib><creatorcontrib>Powell, Luke L.</creatorcontrib><creatorcontrib>Demarest, Dean W.</creatorcontrib><creatorcontrib>Borchert, Sinéad M.</creatorcontrib><creatorcontrib>Greenberg, Russell S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Diversity (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, Brian S.</au><au>Powell, Luke L.</au><au>Demarest, Dean W.</au><au>Borchert, Sinéad M.</au><au>Greenberg, Russell S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flock Size Predicts Niche Breadth and Focal Wintering Regions for a Rapidly Declining Boreal-Breeding Passerine, the Rusty Blackbird</atitle><jtitle>Diversity (Basel)</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>13</volume><issue>2</issue><spage>62</spage><pages>62-</pages><issn>1424-2818</issn><eissn>1424-2818</eissn><abstract>Once exceptionally abundant, the Rusty Blackbird (Euphagus carolinus) has declined precipitously over at least the last century. The species breeds across the Boreal forest, where it is so thinly distributed across such remote areas that it is extremely challenging to monitor or research, hindering informed conservation. As such, we employed a targeted citizen science effort on the species’ wintering grounds in the more (human) populated southeast United States: the Rusty Blackbird Winter Blitz. Using a MaxEnt machine learning framework, we modeled patterns of occurrence of small, medium, and large flocks (&lt;20, 20–99, and &gt;99 individuals, respectively) in environmental space using both Blitz and eBird data. Our primary objective was to determine environmental variables that best predict Rusty Blackbird occurrence, with emphasis on (1) examining differences in key environmental predictors across flock sizes, (2) testing whether environmental niche breadth decreased with flock size, and (3) identifying regions with higher predicted occurrence (hotspots). The distribution of flocks varied across environmental predictors, with average minimum temperature (~2 °C for medium and large flocks) and proportional coverage of floodplain forest having the largest influence on occurrence. Environmental niche breadth decreased with increasing flock size, suggesting an increasingly restrictive range of environmental conditions capable of supporting larger flocks. We identified large hotspots in floodplain forests in the Lower Mississippi Alluvial Valley, the South Atlantic Coastal Plain, and the Black Belt Prairie.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/d13020062</doi><orcidid>https://orcid.org/0000-0002-2001-4982</orcidid><orcidid>https://orcid.org/0000-0001-6081-1794</orcidid><orcidid>https://orcid.org/0000-0002-6665-7115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-2818
ispartof Diversity (Basel), 2021-02, Vol.13 (2), p.62
issn 1424-2818
1424-2818
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0b9f9e2e5aa54e43bfa08693df4f15a9
source Publicly Available Content Database
subjects Alluvial plains
Alluvial valleys
Animal behavior
Birds
Black Belt Prairie
Boreal forests
citizen science
Coastal plains
conservation
Environmental conditions
Environmental testing
Euphagus carolinus
Floodplains
Group size
Habitats
Hypotheses
Learning algorithms
Machine learning
Niche breadth
niche modeling
Population
Remote monitoring
title Flock Size Predicts Niche Breadth and Focal Wintering Regions for a Rapidly Declining Boreal-Breeding Passerine, the Rusty Blackbird
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flock%20Size%20Predicts%20Niche%20Breadth%20and%20Focal%20Wintering%20Regions%20for%20a%20Rapidly%20Declining%20Boreal-Breeding%20Passerine,%20the%20Rusty%20Blackbird&rft.jtitle=Diversity%20(Basel)&rft.au=Evans,%20Brian%20S.&rft.date=2021-02-01&rft.volume=13&rft.issue=2&rft.spage=62&rft.pages=62-&rft.issn=1424-2818&rft.eissn=1424-2818&rft_id=info:doi/10.3390/d13020062&rft_dat=%3Cproquest_doaj_%3E2487525871%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-5e4f43c2f188dda427df1cbbe1dc18dbe992e1a98b21fa91fefffe507328989d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487525871&rft_id=info:pmid/&rfr_iscdi=true