Loading…

An automated DIY framework for experimental evolution of Pseudomonas putida

Summary Adaptive laboratory evolution (ALE) is a general and effective strategy for optimizing the design of engineered genetic circuits and upgrading metabolic phenotypes. However, the specific characteristics of each microorganism typically ask for exclusive conditions that need to be adjusted to...

Full description

Saved in:
Bibliographic Details
Published in:Microbial biotechnology 2021-11, Vol.14 (6), p.2679-2685
Main Authors: Espeso, David R., Dvořák, Pavel, Aparicio, Tomás, Lorenzo, Víctor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary Adaptive laboratory evolution (ALE) is a general and effective strategy for optimizing the design of engineered genetic circuits and upgrading metabolic phenotypes. However, the specific characteristics of each microorganism typically ask for exclusive conditions that need to be adjusted to the biological chassis at stake. In this work, we have adopted a do‐it‐yourself (DIY) approach to implement a flexible and automated framework for performing ALE experiments with the environmental bacterium and metabolic engineering platform Pseudomonas putida. The setup includes a dual‐chamber semi‐continuous log‐phase bioreactor design combined with an anti‐biofilm layout to manage specific traits of this bacterium in long‐term cultivation experiments. As a way of validation, the prototype was instrumental for selecting fast‐growing variants of a P. putida strain engineered to metabolize D‐xylose as sole carbon and energy source after running an automated 42 days protocol of iterative regrowth. Several genomic changes were identified in the evolved population that pinpointed the role of RNA polymerase in controlling overall physiological conditions during metabolism of the new carbon source.
ISSN:1751-7915
1751-7915
DOI:10.1111/1751-7915.13678