Loading…

On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits

Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III–V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each pla...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2017-08, Vol.8 (1), p.379-8, Article 379
Main Authors: Elshaari, Ali W., Zadeh, Iman Esmaeil, Fognini, Andreas, Reimer, Michael E., Dalacu, Dan, Poole, Philip J., Zwiller, Val, Jöns, Klaus D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III–V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III–V quantum emitters are positioned and deterministically integrated in a complementary metal–oxide–semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies’ full potential. Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-00486-8