Loading…

On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits

Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III–V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each pla...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2017-08, Vol.8 (1), p.379-8, Article 379
Main Authors: Elshaari, Ali W., Zadeh, Iman Esmaeil, Fognini, Andreas, Reimer, Michael E., Dalacu, Dan, Poole, Philip J., Zwiller, Val, Jöns, Klaus D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c611t-c19f2b5c673acda9deac372cee7ee0dbc6d1fc9a7f7363b6f341a6e5bb0529fa3
cites cdi_FETCH-LOGICAL-c611t-c19f2b5c673acda9deac372cee7ee0dbc6d1fc9a7f7363b6f341a6e5bb0529fa3
container_end_page 8
container_issue 1
container_start_page 379
container_title Nature communications
container_volume 8
creator Elshaari, Ali W.
Zadeh, Iman Esmaeil
Fognini, Andreas
Reimer, Michael E.
Dalacu, Dan
Poole, Philip J.
Zwiller, Val
Jöns, Klaus D.
description Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III–V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III–V quantum emitters are positioned and deterministically integrated in a complementary metal–oxide–semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies’ full potential. Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.
doi_str_mv 10.1038/s41467-017-00486-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0bbf7bc1c90a4e35b2caea0cc829a5e9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0bbf7bc1c90a4e35b2caea0cc829a5e9</doaj_id><sourcerecordid>1933974541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-c19f2b5c673acda9deac372cee7ee0dbc6d1fc9a7f7363b6f341a6e5bb0529fa3</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEolXpH-CAInEO-DOOL0hV-apUqZfC1bInk42XbJLaTqH_nmSzVLsHLFm2xu88Y3veLHtLyQdKePUxCipKVRA6TyKqsqheZOeMCFpQxfjLo_1ZdhnjlsyDa1oJ8To7Y1UlpdD6PLu_6wto_ZhH3286zMd2SEOfN75LGOZQbvs6301d8mOHf5aA7_P2yQVf5w-T7dO0O-R4yMEHmHyKb7JXje0iXh7Wi-zH1y_319-L27tvN9dXtwWUlKYCqG6Yk1AqbqG2ukYLXDFAVIikdlDWtAFtVaN4yV3ZcEFtidI5IpluLL_IblZuPditGYPf2fBkBuvNPjCEjbEheejQEOca5YCCJlYgl46BRUsAKqatRD2zipUVf-M4uRPaZ__zak_7lVrDqBC6mvWfVv0s3mEN2Kdgu5O005Pet2YzPBoplWJqAbw_AMLwMGFMZjtMoZ__y1DNuVZCCjqr2KqCMMQYsHmuQIlZjGBWI5jZCGZvBLOg3x3f7TnlX9tnAT88dlyajOGo9v-xfwFMO8I6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933974541</pqid></control><display><type>article</type><title>On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Elshaari, Ali W. ; Zadeh, Iman Esmaeil ; Fognini, Andreas ; Reimer, Michael E. ; Dalacu, Dan ; Poole, Philip J. ; Zwiller, Val ; Jöns, Klaus D.</creator><creatorcontrib>Elshaari, Ali W. ; Zadeh, Iman Esmaeil ; Fognini, Andreas ; Reimer, Michael E. ; Dalacu, Dan ; Poole, Philip J. ; Zwiller, Val ; Jöns, Klaus D.</creatorcontrib><description>Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III–V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III–V quantum emitters are positioned and deterministically integrated in a complementary metal–oxide–semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies’ full potential. Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-017-00486-8</identifier><identifier>PMID: 28855499</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1079 ; 639/624/399/1016 ; 639/624/399/1017 ; 639/624/400/3925 ; Circuits ; CMOS ; Filtration ; Humanities and Social Sciences ; Integration ; multidisciplinary ; Multiplexing ; Nanotechnology ; Nanowires ; Photonics ; Quantum dots ; Quantum theory ; Routing ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2017-08, Vol.8 (1), p.379-8, Article 379</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c611t-c19f2b5c673acda9deac372cee7ee0dbc6d1fc9a7f7363b6f341a6e5bb0529fa3</citedby><cites>FETCH-LOGICAL-c611t-c19f2b5c673acda9deac372cee7ee0dbc6d1fc9a7f7363b6f341a6e5bb0529fa3</cites><orcidid>0000-0001-5163-7640 ; 0000-0002-5814-7510 ; 0000-0002-7004-9665 ; 0000-0002-3833-2508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1933974541/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1933974541?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28855499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214498$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Elshaari, Ali W.</creatorcontrib><creatorcontrib>Zadeh, Iman Esmaeil</creatorcontrib><creatorcontrib>Fognini, Andreas</creatorcontrib><creatorcontrib>Reimer, Michael E.</creatorcontrib><creatorcontrib>Dalacu, Dan</creatorcontrib><creatorcontrib>Poole, Philip J.</creatorcontrib><creatorcontrib>Zwiller, Val</creatorcontrib><creatorcontrib>Jöns, Klaus D.</creatorcontrib><title>On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III–V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III–V quantum emitters are positioned and deterministically integrated in a complementary metal–oxide–semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies’ full potential. Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.</description><subject>639/624/1075/1079</subject><subject>639/624/399/1016</subject><subject>639/624/399/1017</subject><subject>639/624/400/3925</subject><subject>Circuits</subject><subject>CMOS</subject><subject>Filtration</subject><subject>Humanities and Social Sciences</subject><subject>Integration</subject><subject>multidisciplinary</subject><subject>Multiplexing</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Photonics</subject><subject>Quantum dots</subject><subject>Quantum theory</subject><subject>Routing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1v1DAQhiMEolXpH-CAInEO-DOOL0hV-apUqZfC1bInk42XbJLaTqH_nmSzVLsHLFm2xu88Y3veLHtLyQdKePUxCipKVRA6TyKqsqheZOeMCFpQxfjLo_1ZdhnjlsyDa1oJ8To7Y1UlpdD6PLu_6wto_ZhH3286zMd2SEOfN75LGOZQbvs6301d8mOHf5aA7_P2yQVf5w-T7dO0O-R4yMEHmHyKb7JXje0iXh7Wi-zH1y_319-L27tvN9dXtwWUlKYCqG6Yk1AqbqG2ukYLXDFAVIikdlDWtAFtVaN4yV3ZcEFtidI5IpluLL_IblZuPditGYPf2fBkBuvNPjCEjbEheejQEOca5YCCJlYgl46BRUsAKqatRD2zipUVf-M4uRPaZ__zak_7lVrDqBC6mvWfVv0s3mEN2Kdgu5O005Pet2YzPBoplWJqAbw_AMLwMGFMZjtMoZ__y1DNuVZCCjqr2KqCMMQYsHmuQIlZjGBWI5jZCGZvBLOg3x3f7TnlX9tnAT88dlyajOGo9v-xfwFMO8I6</recordid><startdate>20170830</startdate><enddate>20170830</enddate><creator>Elshaari, Ali W.</creator><creator>Zadeh, Iman Esmaeil</creator><creator>Fognini, Andreas</creator><creator>Reimer, Michael E.</creator><creator>Dalacu, Dan</creator><creator>Poole, Philip J.</creator><creator>Zwiller, Val</creator><creator>Jöns, Klaus D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5163-7640</orcidid><orcidid>https://orcid.org/0000-0002-5814-7510</orcidid><orcidid>https://orcid.org/0000-0002-7004-9665</orcidid><orcidid>https://orcid.org/0000-0002-3833-2508</orcidid></search><sort><creationdate>20170830</creationdate><title>On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits</title><author>Elshaari, Ali W. ; Zadeh, Iman Esmaeil ; Fognini, Andreas ; Reimer, Michael E. ; Dalacu, Dan ; Poole, Philip J. ; Zwiller, Val ; Jöns, Klaus D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-c19f2b5c673acda9deac372cee7ee0dbc6d1fc9a7f7363b6f341a6e5bb0529fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/624/1075/1079</topic><topic>639/624/399/1016</topic><topic>639/624/399/1017</topic><topic>639/624/400/3925</topic><topic>Circuits</topic><topic>CMOS</topic><topic>Filtration</topic><topic>Humanities and Social Sciences</topic><topic>Integration</topic><topic>multidisciplinary</topic><topic>Multiplexing</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Photonics</topic><topic>Quantum dots</topic><topic>Quantum theory</topic><topic>Routing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elshaari, Ali W.</creatorcontrib><creatorcontrib>Zadeh, Iman Esmaeil</creatorcontrib><creatorcontrib>Fognini, Andreas</creatorcontrib><creatorcontrib>Reimer, Michael E.</creatorcontrib><creatorcontrib>Dalacu, Dan</creatorcontrib><creatorcontrib>Poole, Philip J.</creatorcontrib><creatorcontrib>Zwiller, Val</creatorcontrib><creatorcontrib>Jöns, Klaus D.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elshaari, Ali W.</au><au>Zadeh, Iman Esmaeil</au><au>Fognini, Andreas</au><au>Reimer, Michael E.</au><au>Dalacu, Dan</au><au>Poole, Philip J.</au><au>Zwiller, Val</au><au>Jöns, Klaus D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2017-08-30</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>379</spage><epage>8</epage><pages>379-8</pages><artnum>379</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III–V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III–V quantum emitters are positioned and deterministically integrated in a complementary metal–oxide–semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies’ full potential. Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28855499</pmid><doi>10.1038/s41467-017-00486-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5163-7640</orcidid><orcidid>https://orcid.org/0000-0002-5814-7510</orcidid><orcidid>https://orcid.org/0000-0002-7004-9665</orcidid><orcidid>https://orcid.org/0000-0002-3833-2508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2017-08, Vol.8 (1), p.379-8, Article 379
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0bbf7bc1c90a4e35b2caea0cc829a5e9
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/624/1075/1079
639/624/399/1016
639/624/399/1017
639/624/400/3925
Circuits
CMOS
Filtration
Humanities and Social Sciences
Integration
multidisciplinary
Multiplexing
Nanotechnology
Nanowires
Photonics
Quantum dots
Quantum theory
Routing
Science
Science (multidisciplinary)
title On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-chip%20single%20photon%20filtering%20and%20multiplexing%20in%20hybrid%20quantum%20photonic%20circuits&rft.jtitle=Nature%20communications&rft.au=Elshaari,%20Ali%20W.&rft.date=2017-08-30&rft.volume=8&rft.issue=1&rft.spage=379&rft.epage=8&rft.pages=379-8&rft.artnum=379&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-017-00486-8&rft_dat=%3Cproquest_doaj_%3E1933974541%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c611t-c19f2b5c673acda9deac372cee7ee0dbc6d1fc9a7f7363b6f341a6e5bb0529fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1933974541&rft_id=info:pmid/28855499&rfr_iscdi=true