Loading…

A comparison of light-coupling into high and low index nanostructured photovoltaic thin films

Periodically structured electrodes are typically introduced to thin-film photovoltaics for the purpose of light management. Highly effective light-trapping and optimal in-coupling of light is crucial to enhance the overall device performance in such thin-film systems. Here, wavelength-scale structur...

Full description

Saved in:
Bibliographic Details
Published in:APL materials 2015-06, Vol.3 (6), p.66101-066101-6
Main Authors: Pfadler, T., Stärk, M., Zimmermann, E., Putnik, M., Boneberg, J., Weickert, J., Schmidt-Mende, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Periodically structured electrodes are typically introduced to thin-film photovoltaics for the purpose of light management. Highly effective light-trapping and optimal in-coupling of light is crucial to enhance the overall device performance in such thin-film systems. Here, wavelength-scale structures are transferred via direct laser interference patterning to electron-selective TiO{sub 2} electrodes. Two representative thin-film solar cell architectures are deposited on top: an organic solar cell featuring blended P3HT:PCBM as active material, and a hybrid solar cell with Sb{sub 2}S{sub 3} as inorganic active material. A direct correlation in the asymmetry in total absorption enhancement and in structure-induced light in-coupling is spectroscopically observed for the two systems. The structuring is shown to be beneficial for the total absorption enhancement if a high n active material is deposited on TiO{sub 2}, but detrimental for a low n material. The refractive indices of the employed materials are determined via spectroscopic ellipsometry. The study outlines that the macroscopic Fresnel equations can be used to investigate the spectroscopically observed asymmetry in light in-coupling at the nanostructured TiO{sub 2} active material interfaces by visualizing the difference in reflectivity caused by the asymmetry in refractive indices.
ISSN:2166-532X
2166-532X
DOI:10.1063/1.4921955