Loading…

Property Analysis of Exfoliated Graphite Nanoplatelets Modified Asphalt Model Using Molecular Dynamics (MD) Method

This Molecular Dynamics (MD) simulation paper presents a physical property comparison study between exfoliated graphite nanoplatelets (xGNP) modified and control asphalt models, including density, glass transition temperature, viscosity and thermal conductivity. The three-component control asphalt m...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2017-01, Vol.7 (1), p.43-43
Main Authors: Yao, Hui, Dai, Qingli, You, Zhanping, Bick, Andreas, Wang, Min, Guo, Shuaicheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This Molecular Dynamics (MD) simulation paper presents a physical property comparison study between exfoliated graphite nanoplatelets (xGNP) modified and control asphalt models, including density, glass transition temperature, viscosity and thermal conductivity. The three-component control asphalt model consists of asphaltenes, aromatics, and saturates based on previous references. The xGNP asphalt model was built by incorporating an xGNP and control asphalt model and controlling mass ratios to represent the laboratory prepared samples. The Amber Cornell Extension Force Field (ACEFF) was used with assigned molecular electro-static potential (ESP) charge from NWChem analysis. After optimization and ensemble relaxation, the properties of the control and xGNP modified asphalt models were computed and analyzed using the MD method. The MD simulated results have a similar trend as the test results. The property analysis showed that: (1) the density of the xGNP modified model is higher than that of the control model; (2) the glass transition temperature of the xGNP modified model is closer to the laboratory data of the Strategic Highway Research Program (SHRP) asphalt binders than that of the control model; (3) the viscosities of the xGNP modified model at different temperatures are higher than those of the control model, and it coincides with the trend in the laboratory data; (4) the thermal conductivities of the xGNP modified asphalt model are higher than those of the control asphalt model at different temperatures, and it is consistent with the trend in the laboratory data.
ISSN:2076-3417
2076-3417
DOI:10.3390/app7010043