Loading…

Assessment of pH-responsive nanoparticles performance on laboratory column flotation cell applying a real ore feed

Nanoparticles (NPs) can promote the column flotation process in mining industry. Nanoparticles’ effects on column flotation process (copper recovery, grade and flotation rate constant) are assessed in Sarcheshmeh Copper Complex, Iran, through response surface methodology (RSM) optimization technique...

Full description

Saved in:
Bibliographic Details
Published in:International journal of mining science and technology 2020-03, Vol.30 (2), p.197-205
Main Authors: Nasirimoghaddam, Samiramis, Mohebbi, Ali, Karimi, Mohsen, Reza Yarahmadi, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanoparticles (NPs) can promote the column flotation process in mining industry. Nanoparticles’ effects on column flotation process (copper recovery, grade and flotation rate constant) are assessed in Sarcheshmeh Copper Complex, Iran, through response surface methodology (RSM) optimization technique. The γ-Al2O3, α-Fe2O3, SiO2, and TiO2 nanoparticles are selected for these experiments. A flotation rate constant is chosen as a response to assess the effect of nanoparticles on flotation in its kinetic sense. The process pH and nanoparticle dosage are selected as the influential parameters. Results obtained from RSM indicated that the maximum percentage of Cu recovery and grade is obtained at pH of 12 and nanoparticle dosage of 6 kg/t, through α-Fe2O3 and γ-Al2O3 nanoparticles, respectively. Applying nanoparticles in particular γ-Al2O3 and α-Fe2O3 increases the Cu recovery by 8–10% together with the grade by 3–6% in a significant manner. It is revealed that nanoparticles could effectively be applied in enhancing the flotation performance.
ISSN:2095-2686
DOI:10.1016/j.ijmst.2020.01.001