Loading…

Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities

In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematics (Hidawi) 2021, Vol.2021, p.1-13
Main Authors: Wu, Danfeng, Zhu, Li-Jun, Shan, Zhuang, Yin, Tzu-Chien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c360t-fe875aeaa11e7db4454f5e044d43b8f39f41f26e628b44a66d68dca2403322683
container_end_page 13
container_issue
container_start_page 1
container_title Journal of mathematics (Hidawi)
container_volume 2021
creator Wu, Danfeng
Zhu, Li-Jun
Shan, Zhuang
Yin, Tzu-Chien
description In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequality in real Hilbert spaces. Strong convergence analysis of the proposed algorithms have been obtained under some mild conditions.
doi_str_mv 10.1155/2021/2218666
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0c1728e42d214949a1827721acf181a7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0c1728e42d214949a1827721acf181a7</doaj_id><sourcerecordid>2597346099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-fe875aeaa11e7db4454f5e044d43b8f39f41f26e628b44a66d68dca2403322683</originalsourceid><addsrcrecordid>eNp9kU9PwzAMxSsEEmjsxgeoxBEGsZOm6XGaBkxC4sDgGnmtwzJtC0s6_nx7CoMdOdl-_ulZ1suyMxBXAEVxjQLhGhGM1vogO0EJaqBKUxz-9Rqr46yf0kIIAWikqcRJNh2uafmZfMqDyx-3s5dIjed1m48_2kj7adJypNa_cf5Yz3nFKXch5s8UfaeGziKfrHmzpaVvPafT7MjRMnH_t_ayp5vxdHQ3uH-4nYyG94NaatEOHJuyICYC4LKZKVUoV7BQqlFyZpysnAKHmjWabklaN9o0NaESUiJqI3vZZOfbBFrY1-hXFD9tIG9_hBBfLMXW10u2ooYSDStsEFSlKgKDZYlAtQMDVHZe5zuv1xg2W06tXYRt7D5LFouqlEqLquqoyx1Vx5BSZLe_CsJ-x2C_Y7C_MXT4xQ6f-3VD7_5_-gt9HIV8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597346099</pqid></control><display><type>article</type><title>Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Wu, Danfeng ; Zhu, Li-Jun ; Shan, Zhuang ; Yin, Tzu-Chien</creator><contributor>Liu, Liya ; Liya Liu</contributor><creatorcontrib>Wu, Danfeng ; Zhu, Li-Jun ; Shan, Zhuang ; Yin, Tzu-Chien ; Liu, Liya ; Liya Liu</creatorcontrib><description>In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequality in real Hilbert spaces. Strong convergence analysis of the proposed algorithms have been obtained under some mild conditions.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2021/2218666</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Adaptive algorithms ; Algorithms ; Hilbert space ; Mathematics ; Regularization methods</subject><ispartof>Journal of mathematics (Hidawi), 2021, Vol.2021, p.1-13</ispartof><rights>Copyright © 2021 Danfeng Wu et al.</rights><rights>Copyright © 2021 Danfeng Wu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-fe875aeaa11e7db4454f5e044d43b8f39f41f26e628b44a66d68dca2403322683</cites><orcidid>0000-0003-4309-4505 ; 0000-0002-9323-5145 ; 0000-0001-8883-5034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2597346099/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2597346099?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Liu, Liya</contributor><contributor>Liya Liu</contributor><creatorcontrib>Wu, Danfeng</creatorcontrib><creatorcontrib>Zhu, Li-Jun</creatorcontrib><creatorcontrib>Shan, Zhuang</creatorcontrib><creatorcontrib>Yin, Tzu-Chien</creatorcontrib><title>Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities</title><title>Journal of mathematics (Hidawi)</title><description>In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequality in real Hilbert spaces. Strong convergence analysis of the proposed algorithms have been obtained under some mild conditions.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Regularization methods</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9PwzAMxSsEEmjsxgeoxBEGsZOm6XGaBkxC4sDgGnmtwzJtC0s6_nx7CoMdOdl-_ulZ1suyMxBXAEVxjQLhGhGM1vogO0EJaqBKUxz-9Rqr46yf0kIIAWikqcRJNh2uafmZfMqDyx-3s5dIjed1m48_2kj7adJypNa_cf5Yz3nFKXch5s8UfaeGziKfrHmzpaVvPafT7MjRMnH_t_ayp5vxdHQ3uH-4nYyG94NaatEOHJuyICYC4LKZKVUoV7BQqlFyZpysnAKHmjWabklaN9o0NaESUiJqI3vZZOfbBFrY1-hXFD9tIG9_hBBfLMXW10u2ooYSDStsEFSlKgKDZYlAtQMDVHZe5zuv1xg2W06tXYRt7D5LFouqlEqLquqoyx1Vx5BSZLe_CsJ-x2C_Y7C_MXT4xQ6f-3VD7_5_-gt9HIV8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wu, Danfeng</creator><creator>Zhu, Li-Jun</creator><creator>Shan, Zhuang</creator><creator>Yin, Tzu-Chien</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4309-4505</orcidid><orcidid>https://orcid.org/0000-0002-9323-5145</orcidid><orcidid>https://orcid.org/0000-0001-8883-5034</orcidid></search><sort><creationdate>2021</creationdate><title>Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities</title><author>Wu, Danfeng ; Zhu, Li-Jun ; Shan, Zhuang ; Yin, Tzu-Chien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-fe875aeaa11e7db4454f5e044d43b8f39f41f26e628b44a66d68dca2403322683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Regularization methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Danfeng</creatorcontrib><creatorcontrib>Zhu, Li-Jun</creatorcontrib><creatorcontrib>Shan, Zhuang</creatorcontrib><creatorcontrib>Yin, Tzu-Chien</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Danfeng</au><au>Zhu, Li-Jun</au><au>Shan, Zhuang</au><au>Yin, Tzu-Chien</au><au>Liu, Liya</au><au>Liya Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequality in real Hilbert spaces. Strong convergence analysis of the proposed algorithms have been obtained under some mild conditions.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2021/2218666</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4309-4505</orcidid><orcidid>https://orcid.org/0000-0002-9323-5145</orcidid><orcidid>https://orcid.org/0000-0001-8883-5034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-4629
ispartof Journal of mathematics (Hidawi), 2021, Vol.2021, p.1-13
issn 2314-4629
2314-4785
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0c1728e42d214949a1827721acf181a7
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Adaptive algorithms
Algorithms
Hilbert space
Mathematics
Regularization methods
title Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Subgradient%20Extragradient%20Iterative%20Schemes%20for%20Variational%20Inequalities&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Wu,%20Danfeng&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2021/2218666&rft_dat=%3Cproquest_doaj_%3E2597346099%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-fe875aeaa11e7db4454f5e044d43b8f39f41f26e628b44a66d68dca2403322683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2597346099&rft_id=info:pmid/&rfr_iscdi=true