Loading…
Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities
In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequa...
Saved in:
Published in: | Journal of mathematics (Hidawi) 2021, Vol.2021, p.1-13 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-fe875aeaa11e7db4454f5e044d43b8f39f41f26e628b44a66d68dca2403322683 |
container_end_page | 13 |
container_issue | |
container_start_page | 1 |
container_title | Journal of mathematics (Hidawi) |
container_volume | 2021 |
creator | Wu, Danfeng Zhu, Li-Jun Shan, Zhuang Yin, Tzu-Chien |
description | In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequality in real Hilbert spaces. Strong convergence analysis of the proposed algorithms have been obtained under some mild conditions. |
doi_str_mv | 10.1155/2021/2218666 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0c1728e42d214949a1827721acf181a7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0c1728e42d214949a1827721acf181a7</doaj_id><sourcerecordid>2597346099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-fe875aeaa11e7db4454f5e044d43b8f39f41f26e628b44a66d68dca2403322683</originalsourceid><addsrcrecordid>eNp9kU9PwzAMxSsEEmjsxgeoxBEGsZOm6XGaBkxC4sDgGnmtwzJtC0s6_nx7CoMdOdl-_ulZ1suyMxBXAEVxjQLhGhGM1vogO0EJaqBKUxz-9Rqr46yf0kIIAWikqcRJNh2uafmZfMqDyx-3s5dIjed1m48_2kj7adJypNa_cf5Yz3nFKXch5s8UfaeGziKfrHmzpaVvPafT7MjRMnH_t_ayp5vxdHQ3uH-4nYyG94NaatEOHJuyICYC4LKZKVUoV7BQqlFyZpysnAKHmjWabklaN9o0NaESUiJqI3vZZOfbBFrY1-hXFD9tIG9_hBBfLMXW10u2ooYSDStsEFSlKgKDZYlAtQMDVHZe5zuv1xg2W06tXYRt7D5LFouqlEqLquqoyx1Vx5BSZLe_CsJ-x2C_Y7C_MXT4xQ6f-3VD7_5_-gt9HIV8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597346099</pqid></control><display><type>article</type><title>Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Wu, Danfeng ; Zhu, Li-Jun ; Shan, Zhuang ; Yin, Tzu-Chien</creator><contributor>Liu, Liya ; Liya Liu</contributor><creatorcontrib>Wu, Danfeng ; Zhu, Li-Jun ; Shan, Zhuang ; Yin, Tzu-Chien ; Liu, Liya ; Liya Liu</creatorcontrib><description>In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequality in real Hilbert spaces. Strong convergence analysis of the proposed algorithms have been obtained under some mild conditions.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2021/2218666</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Adaptive algorithms ; Algorithms ; Hilbert space ; Mathematics ; Regularization methods</subject><ispartof>Journal of mathematics (Hidawi), 2021, Vol.2021, p.1-13</ispartof><rights>Copyright © 2021 Danfeng Wu et al.</rights><rights>Copyright © 2021 Danfeng Wu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-fe875aeaa11e7db4454f5e044d43b8f39f41f26e628b44a66d68dca2403322683</cites><orcidid>0000-0003-4309-4505 ; 0000-0002-9323-5145 ; 0000-0001-8883-5034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2597346099/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2597346099?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Liu, Liya</contributor><contributor>Liya Liu</contributor><creatorcontrib>Wu, Danfeng</creatorcontrib><creatorcontrib>Zhu, Li-Jun</creatorcontrib><creatorcontrib>Shan, Zhuang</creatorcontrib><creatorcontrib>Yin, Tzu-Chien</creatorcontrib><title>Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities</title><title>Journal of mathematics (Hidawi)</title><description>In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequality in real Hilbert spaces. Strong convergence analysis of the proposed algorithms have been obtained under some mild conditions.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Regularization methods</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9PwzAMxSsEEmjsxgeoxBEGsZOm6XGaBkxC4sDgGnmtwzJtC0s6_nx7CoMdOdl-_ulZ1suyMxBXAEVxjQLhGhGM1vogO0EJaqBKUxz-9Rqr46yf0kIIAWikqcRJNh2uafmZfMqDyx-3s5dIjed1m48_2kj7adJypNa_cf5Yz3nFKXch5s8UfaeGziKfrHmzpaVvPafT7MjRMnH_t_ayp5vxdHQ3uH-4nYyG94NaatEOHJuyICYC4LKZKVUoV7BQqlFyZpysnAKHmjWabklaN9o0NaESUiJqI3vZZOfbBFrY1-hXFD9tIG9_hBBfLMXW10u2ooYSDStsEFSlKgKDZYlAtQMDVHZe5zuv1xg2W06tXYRt7D5LFouqlEqLquqoyx1Vx5BSZLe_CsJ-x2C_Y7C_MXT4xQ6f-3VD7_5_-gt9HIV8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wu, Danfeng</creator><creator>Zhu, Li-Jun</creator><creator>Shan, Zhuang</creator><creator>Yin, Tzu-Chien</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4309-4505</orcidid><orcidid>https://orcid.org/0000-0002-9323-5145</orcidid><orcidid>https://orcid.org/0000-0001-8883-5034</orcidid></search><sort><creationdate>2021</creationdate><title>Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities</title><author>Wu, Danfeng ; Zhu, Li-Jun ; Shan, Zhuang ; Yin, Tzu-Chien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-fe875aeaa11e7db4454f5e044d43b8f39f41f26e628b44a66d68dca2403322683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Regularization methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Danfeng</creatorcontrib><creatorcontrib>Zhu, Li-Jun</creatorcontrib><creatorcontrib>Shan, Zhuang</creatorcontrib><creatorcontrib>Yin, Tzu-Chien</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Danfeng</au><au>Zhu, Li-Jun</au><au>Shan, Zhuang</au><au>Yin, Tzu-Chien</au><au>Liu, Liya</au><au>Liya Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequality in real Hilbert spaces. Strong convergence analysis of the proposed algorithms have been obtained under some mild conditions.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2021/2218666</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4309-4505</orcidid><orcidid>https://orcid.org/0000-0002-9323-5145</orcidid><orcidid>https://orcid.org/0000-0001-8883-5034</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-4629 |
ispartof | Journal of mathematics (Hidawi), 2021, Vol.2021, p.1-13 |
issn | 2314-4629 2314-4785 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0c1728e42d214949a1827721acf181a7 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Adaptive algorithms Algorithms Hilbert space Mathematics Regularization methods |
title | Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Subgradient%20Extragradient%20Iterative%20Schemes%20for%20Variational%20Inequalities&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Wu,%20Danfeng&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2021/2218666&rft_dat=%3Cproquest_doaj_%3E2597346099%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-fe875aeaa11e7db4454f5e044d43b8f39f41f26e628b44a66d68dca2403322683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2597346099&rft_id=info:pmid/&rfr_iscdi=true |