Loading…

A Novel Method for Detecting Ferromagnetic Wear Debris with High Flow Velocity

Inductance detection is an important method for detecting wear debris in ship lubricating oil. Presently, an LCR (inductance, resistance, capacitance) meter is generally used to detect wear debris by measuring the inductance change of the sensing coil. When ferromagnetic debris passes through the se...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-06, Vol.22 (13), p.4912
Main Authors: Wang, Feng, Liu, Zhijian, Ren, Xiaojing, Wu, Sen, Meng, Meilin, Wang, Yulin, Pan, Xinxiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inductance detection is an important method for detecting wear debris in ship lubricating oil. Presently, an LCR (inductance, resistance, capacitance) meter is generally used to detect wear debris by measuring the inductance change of the sensing coil. When ferromagnetic debris passes through the sensing coil, a pulse will appear in the inductance signal. Previous studies have shown that the amplitude of the inductance pulse decreases significantly with the increase in the particles’ velocity. Therefore, it is difficult to detect ferromagnetic debris with a high flow velocity using an LCR meter. In this paper, a novel method, high-frequency voltage acquisition (HFVA), is proposed to detect ferromagnetic debris. Different from previous methods, the wear debris was detected directly by measuring the voltage change of the sensing coil, while the synchronized sampling method was utilized to ensure the higher-frequency acquisition of the sensor output signal. The experimental results show that when the velocity of particles increased from 6 mm/s to 62 mm/s, the amplitude of the signal pulse obtained by HFVA decreased by only 13%, which was much lower than the 85% obtained by utilizing the LCR method.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22134912