Loading…
Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters
This paper is concerned with the number of limit cycles bifurcating from a period annulus for some planar piecewise smooth non-Hamiltonian systems. We construct a planar piecewise quadratic system with multiple parameters, obtain its lower bound for the maximum number of limit cycles by using Melnik...
Saved in:
Published in: | Advances in difference equations 2020-07, Vol.2020 (1), p.1-16, Article 366 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 1 |
container_title | Advances in difference equations |
container_volume | 2020 |
creator | Gong, Shuhua Han, Maoan |
description | This paper is concerned with the number of limit cycles bifurcating from a period annulus for some planar piecewise smooth non-Hamiltonian systems. We construct a planar piecewise quadratic system with multiple parameters, obtain its lower bound for the maximum number of limit cycles by using Melnikov function method, and find more limit cycles than (Li and Liu in J. Math. Anal. Appl. 428:1354–1367,
2015
). |
doi_str_mv | 10.1186/s13662-020-02827-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0c28342305a0408185033e3edc628bc5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0c28342305a0408185033e3edc628bc5</doaj_id><sourcerecordid>2424570550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpoOkmfyAnQc9u9GVLPpbQj4WFXBLITYzkcaLFXyvZLPvvq6xLk1MOwwzD-z4z8BJyw9l3zk11m7isKlEwwXIZoQvxiVzyyuiCG6U_v5u_kK8p7RkTtTLmkjztQh9m6k--Q-pCu0QPcxiHRMNAgU4dDBDpFNDjMSSkhwWamBWeplOasafHML_QfunmMGXCBBF6nDGmK3LRQpfw-l_fkMdfPx_u_hS7-9_bux-7witRz4WWpQOQWutKS-4q3zYNyNY456WWYBC9Y6XCxtQtYO2FlwbqRjimULdOyg3ZrtxmhL2dYughnuwIwZ4XY3y2EPO_HVrmhZFKSFYCU8xwUzIpUWLjK2GcLzPr28qa4nhYMM12Py5xyO9boYQqNSuzZUPEqvJxTCli-_8qZ_Y1DbumYXMa9pyGFdkkV1PK4uEZ4xv6A9df0yWOCQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424570550</pqid></control><display><type>article</type><title>Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters</title><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Gong, Shuhua ; Han, Maoan</creator><creatorcontrib>Gong, Shuhua ; Han, Maoan</creatorcontrib><description>This paper is concerned with the number of limit cycles bifurcating from a period annulus for some planar piecewise smooth non-Hamiltonian systems. We construct a planar piecewise quadratic system with multiple parameters, obtain its lower bound for the maximum number of limit cycles by using Melnikov function method, and find more limit cycles than (Li and Liu in J. Math. Anal. Appl. 428:1354–1367,
2015
).</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-020-02827-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Bifurcations ; Chaos theory ; Construction planning ; Difference and Functional Equations ; Functional Analysis ; Hamiltonian functions ; Limit cycle ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Melnikov function method ; Ordinary Differential Equations ; Parameters ; Partial Differential Equations ; Piecewise smooth system</subject><ispartof>Advances in difference equations, 2020-07, Vol.2020 (1), p.1-16, Article 366</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33</citedby><cites>FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2424570550/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2424570550?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Gong, Shuhua</creatorcontrib><creatorcontrib>Han, Maoan</creatorcontrib><title>Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>This paper is concerned with the number of limit cycles bifurcating from a period annulus for some planar piecewise smooth non-Hamiltonian systems. We construct a planar piecewise quadratic system with multiple parameters, obtain its lower bound for the maximum number of limit cycles by using Melnikov function method, and find more limit cycles than (Li and Liu in J. Math. Anal. Appl. 428:1354–1367,
2015
).</description><subject>Analysis</subject><subject>Bifurcations</subject><subject>Chaos theory</subject><subject>Construction planning</subject><subject>Difference and Functional Equations</subject><subject>Functional Analysis</subject><subject>Hamiltonian functions</subject><subject>Limit cycle</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Melnikov function method</subject><subject>Ordinary Differential Equations</subject><subject>Parameters</subject><subject>Partial Differential Equations</subject><subject>Piecewise smooth system</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhkVpoOkmfyAnQc9u9GVLPpbQj4WFXBLITYzkcaLFXyvZLPvvq6xLk1MOwwzD-z4z8BJyw9l3zk11m7isKlEwwXIZoQvxiVzyyuiCG6U_v5u_kK8p7RkTtTLmkjztQh9m6k--Q-pCu0QPcxiHRMNAgU4dDBDpFNDjMSSkhwWamBWeplOasafHML_QfunmMGXCBBF6nDGmK3LRQpfw-l_fkMdfPx_u_hS7-9_bux-7witRz4WWpQOQWutKS-4q3zYNyNY456WWYBC9Y6XCxtQtYO2FlwbqRjimULdOyg3ZrtxmhL2dYughnuwIwZ4XY3y2EPO_HVrmhZFKSFYCU8xwUzIpUWLjK2GcLzPr28qa4nhYMM12Py5xyO9boYQqNSuzZUPEqvJxTCli-_8qZ_Y1DbumYXMa9pyGFdkkV1PK4uEZ4xv6A9df0yWOCQ</recordid><startdate>20200717</startdate><enddate>20200717</enddate><creator>Gong, Shuhua</creator><creator>Han, Maoan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20200717</creationdate><title>Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters</title><author>Gong, Shuhua ; Han, Maoan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Bifurcations</topic><topic>Chaos theory</topic><topic>Construction planning</topic><topic>Difference and Functional Equations</topic><topic>Functional Analysis</topic><topic>Hamiltonian functions</topic><topic>Limit cycle</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Melnikov function method</topic><topic>Ordinary Differential Equations</topic><topic>Parameters</topic><topic>Partial Differential Equations</topic><topic>Piecewise smooth system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Shuhua</creatorcontrib><creatorcontrib>Han, Maoan</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Shuhua</au><au>Han, Maoan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2020-07-17</date><risdate>2020</risdate><volume>2020</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>366</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>This paper is concerned with the number of limit cycles bifurcating from a period annulus for some planar piecewise smooth non-Hamiltonian systems. We construct a planar piecewise quadratic system with multiple parameters, obtain its lower bound for the maximum number of limit cycles by using Melnikov function method, and find more limit cycles than (Li and Liu in J. Math. Anal. Appl. 428:1354–1367,
2015
).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-020-02827-2</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1847 |
ispartof | Advances in difference equations, 2020-07, Vol.2020 (1), p.1-16, Article 366 |
issn | 1687-1847 1687-1839 1687-1847 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0c28342305a0408185033e3edc628bc5 |
source | DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest) |
subjects | Analysis Bifurcations Chaos theory Construction planning Difference and Functional Equations Functional Analysis Hamiltonian functions Limit cycle Lower bounds Mathematics Mathematics and Statistics Melnikov function method Ordinary Differential Equations Parameters Partial Differential Equations Piecewise smooth system |
title | Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limit%20cycle%20bifurcations%20in%20a%20planar%20piecewise%20quadratic%20system%20with%20multiple%20parameters&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Gong,%20Shuhua&rft.date=2020-07-17&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=366&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-020-02827-2&rft_dat=%3Cproquest_doaj_%3E2424570550%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2424570550&rft_id=info:pmid/&rfr_iscdi=true |