Loading…

Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters

This paper is concerned with the number of limit cycles bifurcating from a period annulus for some planar piecewise smooth non-Hamiltonian systems. We construct a planar piecewise quadratic system with multiple parameters, obtain its lower bound for the maximum number of limit cycles by using Melnik...

Full description

Saved in:
Bibliographic Details
Published in:Advances in difference equations 2020-07, Vol.2020 (1), p.1-16, Article 366
Main Authors: Gong, Shuhua, Han, Maoan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33
cites cdi_FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33
container_end_page 16
container_issue 1
container_start_page 1
container_title Advances in difference equations
container_volume 2020
creator Gong, Shuhua
Han, Maoan
description This paper is concerned with the number of limit cycles bifurcating from a period annulus for some planar piecewise smooth non-Hamiltonian systems. We construct a planar piecewise quadratic system with multiple parameters, obtain its lower bound for the maximum number of limit cycles by using Melnikov function method, and find more limit cycles than (Li and Liu in J. Math. Anal. Appl. 428:1354–1367, 2015 ).
doi_str_mv 10.1186/s13662-020-02827-2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0c28342305a0408185033e3edc628bc5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0c28342305a0408185033e3edc628bc5</doaj_id><sourcerecordid>2424570550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpoOkmfyAnQc9u9GVLPpbQj4WFXBLITYzkcaLFXyvZLPvvq6xLk1MOwwzD-z4z8BJyw9l3zk11m7isKlEwwXIZoQvxiVzyyuiCG6U_v5u_kK8p7RkTtTLmkjztQh9m6k--Q-pCu0QPcxiHRMNAgU4dDBDpFNDjMSSkhwWamBWeplOasafHML_QfunmMGXCBBF6nDGmK3LRQpfw-l_fkMdfPx_u_hS7-9_bux-7witRz4WWpQOQWutKS-4q3zYNyNY456WWYBC9Y6XCxtQtYO2FlwbqRjimULdOyg3ZrtxmhL2dYughnuwIwZ4XY3y2EPO_HVrmhZFKSFYCU8xwUzIpUWLjK2GcLzPr28qa4nhYMM12Py5xyO9boYQqNSuzZUPEqvJxTCli-_8qZ_Y1DbumYXMa9pyGFdkkV1PK4uEZ4xv6A9df0yWOCQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424570550</pqid></control><display><type>article</type><title>Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters</title><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Gong, Shuhua ; Han, Maoan</creator><creatorcontrib>Gong, Shuhua ; Han, Maoan</creatorcontrib><description>This paper is concerned with the number of limit cycles bifurcating from a period annulus for some planar piecewise smooth non-Hamiltonian systems. We construct a planar piecewise quadratic system with multiple parameters, obtain its lower bound for the maximum number of limit cycles by using Melnikov function method, and find more limit cycles than (Li and Liu in J. Math. Anal. Appl. 428:1354–1367, 2015 ).</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-020-02827-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Bifurcations ; Chaos theory ; Construction planning ; Difference and Functional Equations ; Functional Analysis ; Hamiltonian functions ; Limit cycle ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Melnikov function method ; Ordinary Differential Equations ; Parameters ; Partial Differential Equations ; Piecewise smooth system</subject><ispartof>Advances in difference equations, 2020-07, Vol.2020 (1), p.1-16, Article 366</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33</citedby><cites>FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2424570550/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2424570550?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Gong, Shuhua</creatorcontrib><creatorcontrib>Han, Maoan</creatorcontrib><title>Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>This paper is concerned with the number of limit cycles bifurcating from a period annulus for some planar piecewise smooth non-Hamiltonian systems. We construct a planar piecewise quadratic system with multiple parameters, obtain its lower bound for the maximum number of limit cycles by using Melnikov function method, and find more limit cycles than (Li and Liu in J. Math. Anal. Appl. 428:1354–1367, 2015 ).</description><subject>Analysis</subject><subject>Bifurcations</subject><subject>Chaos theory</subject><subject>Construction planning</subject><subject>Difference and Functional Equations</subject><subject>Functional Analysis</subject><subject>Hamiltonian functions</subject><subject>Limit cycle</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Melnikov function method</subject><subject>Ordinary Differential Equations</subject><subject>Parameters</subject><subject>Partial Differential Equations</subject><subject>Piecewise smooth system</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhkVpoOkmfyAnQc9u9GVLPpbQj4WFXBLITYzkcaLFXyvZLPvvq6xLk1MOwwzD-z4z8BJyw9l3zk11m7isKlEwwXIZoQvxiVzyyuiCG6U_v5u_kK8p7RkTtTLmkjztQh9m6k--Q-pCu0QPcxiHRMNAgU4dDBDpFNDjMSSkhwWamBWeplOasafHML_QfunmMGXCBBF6nDGmK3LRQpfw-l_fkMdfPx_u_hS7-9_bux-7witRz4WWpQOQWutKS-4q3zYNyNY456WWYBC9Y6XCxtQtYO2FlwbqRjimULdOyg3ZrtxmhL2dYughnuwIwZ4XY3y2EPO_HVrmhZFKSFYCU8xwUzIpUWLjK2GcLzPr28qa4nhYMM12Py5xyO9boYQqNSuzZUPEqvJxTCli-_8qZ_Y1DbumYXMa9pyGFdkkV1PK4uEZ4xv6A9df0yWOCQ</recordid><startdate>20200717</startdate><enddate>20200717</enddate><creator>Gong, Shuhua</creator><creator>Han, Maoan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20200717</creationdate><title>Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters</title><author>Gong, Shuhua ; Han, Maoan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Bifurcations</topic><topic>Chaos theory</topic><topic>Construction planning</topic><topic>Difference and Functional Equations</topic><topic>Functional Analysis</topic><topic>Hamiltonian functions</topic><topic>Limit cycle</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Melnikov function method</topic><topic>Ordinary Differential Equations</topic><topic>Parameters</topic><topic>Partial Differential Equations</topic><topic>Piecewise smooth system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Shuhua</creatorcontrib><creatorcontrib>Han, Maoan</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Shuhua</au><au>Han, Maoan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2020-07-17</date><risdate>2020</risdate><volume>2020</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>366</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>This paper is concerned with the number of limit cycles bifurcating from a period annulus for some planar piecewise smooth non-Hamiltonian systems. We construct a planar piecewise quadratic system with multiple parameters, obtain its lower bound for the maximum number of limit cycles by using Melnikov function method, and find more limit cycles than (Li and Liu in J. Math. Anal. Appl. 428:1354–1367, 2015 ).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-020-02827-2</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1847
ispartof Advances in difference equations, 2020-07, Vol.2020 (1), p.1-16, Article 366
issn 1687-1847
1687-1839
1687-1847
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0c28342305a0408185033e3edc628bc5
source DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest)
subjects Analysis
Bifurcations
Chaos theory
Construction planning
Difference and Functional Equations
Functional Analysis
Hamiltonian functions
Limit cycle
Lower bounds
Mathematics
Mathematics and Statistics
Melnikov function method
Ordinary Differential Equations
Parameters
Partial Differential Equations
Piecewise smooth system
title Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limit%20cycle%20bifurcations%20in%20a%20planar%20piecewise%20quadratic%20system%20with%20multiple%20parameters&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Gong,%20Shuhua&rft.date=2020-07-17&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=366&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-020-02827-2&rft_dat=%3Cproquest_doaj_%3E2424570550%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-735baa37776731b6cfdda3f8bbc373a8eecb054ed89fae9c2c38a9d2b04e7fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2424570550&rft_id=info:pmid/&rfr_iscdi=true