Loading…

A Review of Application of Deep Learning in Endoscopic Image Processing

Deep learning, particularly convolutional neural networks (CNNs), has revolutionized endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis through its exceptional ability to extract features and classify complex patterns. This technology automates medi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of imaging 2024-11, Vol.10 (11), p.275
Main Authors: Nie, Zihan, Xu, Muhao, Wang, Zhiyong, Lu, Xiaoqi, Song, Weiye
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c441t-722f0591c294166f5b1fc758c5970ed4cca1755b28c54c4a57e991121f1b19353
container_end_page
container_issue 11
container_start_page 275
container_title Journal of imaging
container_volume 10
creator Nie, Zihan
Xu, Muhao
Wang, Zhiyong
Lu, Xiaoqi
Song, Weiye
description Deep learning, particularly convolutional neural networks (CNNs), has revolutionized endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis through its exceptional ability to extract features and classify complex patterns. This technology automates medical image analysis, alleviating the workload of physicians and enabling a more focused and personalized approach to patient care. However, despite these remarkable achievements, there are still opportunities to further optimize deep learning models for endoscopic image analysis, including addressing limitations such as the requirement for large annotated datasets and the challenge of achieving higher diagnostic precision, particularly for rare or subtle pathologies. This review comprehensively examines the profound impact of deep learning on endoscopic image processing, highlighting its current strengths and limitations. It also explores potential future directions for research and development, outlining strategies to overcome existing challenges and facilitate the integration of deep learning into clinical practice. Ultimately, the goal is to contribute to the ongoing advancement of medical imaging technologies, leading to more accurate, personalized, and optimized medical care for patients.
doi_str_mv 10.3390/jimaging10110275
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0c35d7bf66564bdabf6681dfc35e7bf8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818333869</galeid><doaj_id>oai_doaj_org_article_0c35d7bf66564bdabf6681dfc35e7bf8</doaj_id><sourcerecordid>A818333869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-722f0591c294166f5b1fc758c5970ed4cca1755b28c54c4a57e991121f1b19353</originalsourceid><addsrcrecordid>eNptUlFrFDEQXkSxpfbdJ1nwxZermc1ms3mSo9Z6cKCIgm8hm52cOfaSNdmr-O-d7dXaKxJCJt98801mMkXxEtgF54q93fqd2fiwAQbAKimeFKcVB76oOf_-9IF9UpznvGWMgapoq-fFCVdCMcnVaXG9LL_gjcdfZXTlchwHb83kY5iv7xHHco0mBcpS-lBehT5mG0dvyxXlxvJzihZzJveL4pkzQ8bzu_Os-Pbh6uvlx8X60_Xqcrle2LqGaSGryjGhwFaqhqZxogNnpWitUJJhX1trQArRVYTUtjZColIAFTjoQHHBz4rVQbePZqvHRD1Iv3U0Xt8CMW20SZO3A2pmuehl55pGNHXXm9lqoXcEI8Etab07aI37boe9xTAlMxyJHnuC_6E38UYDCCWkrEjhzZ1Cij_3mCe989niMJiAcZ81fQGnOlUzP_z1I-o27lOgXt2ymABWwz_WxlAFPrhIie0sqpcttJzztlHEuvgPi1aPO29jQOcJPwpghwCbYs4J3X2RwPQ8TPrxMFHIq4fNuQ_4Ozr8D4KWw44</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133051041</pqid></control><display><type>article</type><title>A Review of Application of Deep Learning in Endoscopic Image Processing</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Nie, Zihan ; Xu, Muhao ; Wang, Zhiyong ; Lu, Xiaoqi ; Song, Weiye</creator><creatorcontrib>Nie, Zihan ; Xu, Muhao ; Wang, Zhiyong ; Lu, Xiaoqi ; Song, Weiye</creatorcontrib><description>Deep learning, particularly convolutional neural networks (CNNs), has revolutionized endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis through its exceptional ability to extract features and classify complex patterns. This technology automates medical image analysis, alleviating the workload of physicians and enabling a more focused and personalized approach to patient care. However, despite these remarkable achievements, there are still opportunities to further optimize deep learning models for endoscopic image analysis, including addressing limitations such as the requirement for large annotated datasets and the challenge of achieving higher diagnostic precision, particularly for rare or subtle pathologies. This review comprehensively examines the profound impact of deep learning on endoscopic image processing, highlighting its current strengths and limitations. It also explores potential future directions for research and development, outlining strategies to overcome existing challenges and facilitate the integration of deep learning into clinical practice. Ultimately, the goal is to contribute to the ongoing advancement of medical imaging technologies, leading to more accurate, personalized, and optimized medical care for patients.</description><identifier>ISSN: 2313-433X</identifier><identifier>EISSN: 2313-433X</identifier><identifier>DOI: 10.3390/jimaging10110275</identifier><identifier>PMID: 39590739</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Artificial intelligence ; Artificial neural networks ; Automation ; Clinical outcomes ; Comparative analysis ; convolutional neural networks (CNNs) ; Customization ; Deep learning ; Disease prevention ; Efficiency ; Endoscopy ; Health services ; Image analysis ; Image enhancement ; Image processing ; Impact analysis ; Machine learning ; Medical diagnosis ; Medical imaging ; Methods ; Neural networks ; R&amp;D ; Research &amp; development ; Review ; Technology ; Technology application ; Technology assessment ; Tomography ; Ultrasonic imaging ; Workloads</subject><ispartof>Journal of imaging, 2024-11, Vol.10 (11), p.275</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c441t-722f0591c294166f5b1fc758c5970ed4cca1755b28c54c4a57e991121f1b19353</cites><orcidid>0000-0002-1835-9770 ; 0009-0003-9115-5146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3133051041/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3133051041?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39590739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Zihan</creatorcontrib><creatorcontrib>Xu, Muhao</creatorcontrib><creatorcontrib>Wang, Zhiyong</creatorcontrib><creatorcontrib>Lu, Xiaoqi</creatorcontrib><creatorcontrib>Song, Weiye</creatorcontrib><title>A Review of Application of Deep Learning in Endoscopic Image Processing</title><title>Journal of imaging</title><addtitle>J Imaging</addtitle><description>Deep learning, particularly convolutional neural networks (CNNs), has revolutionized endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis through its exceptional ability to extract features and classify complex patterns. This technology automates medical image analysis, alleviating the workload of physicians and enabling a more focused and personalized approach to patient care. However, despite these remarkable achievements, there are still opportunities to further optimize deep learning models for endoscopic image analysis, including addressing limitations such as the requirement for large annotated datasets and the challenge of achieving higher diagnostic precision, particularly for rare or subtle pathologies. This review comprehensively examines the profound impact of deep learning on endoscopic image processing, highlighting its current strengths and limitations. It also explores potential future directions for research and development, outlining strategies to overcome existing challenges and facilitate the integration of deep learning into clinical practice. Ultimately, the goal is to contribute to the ongoing advancement of medical imaging technologies, leading to more accurate, personalized, and optimized medical care for patients.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Clinical outcomes</subject><subject>Comparative analysis</subject><subject>convolutional neural networks (CNNs)</subject><subject>Customization</subject><subject>Deep learning</subject><subject>Disease prevention</subject><subject>Efficiency</subject><subject>Endoscopy</subject><subject>Health services</subject><subject>Image analysis</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Impact analysis</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Neural networks</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Review</subject><subject>Technology</subject><subject>Technology application</subject><subject>Technology assessment</subject><subject>Tomography</subject><subject>Ultrasonic imaging</subject><subject>Workloads</subject><issn>2313-433X</issn><issn>2313-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUlFrFDEQXkSxpfbdJ1nwxZermc1ms3mSo9Z6cKCIgm8hm52cOfaSNdmr-O-d7dXaKxJCJt98801mMkXxEtgF54q93fqd2fiwAQbAKimeFKcVB76oOf_-9IF9UpznvGWMgapoq-fFCVdCMcnVaXG9LL_gjcdfZXTlchwHb83kY5iv7xHHco0mBcpS-lBehT5mG0dvyxXlxvJzihZzJveL4pkzQ8bzu_Os-Pbh6uvlx8X60_Xqcrle2LqGaSGryjGhwFaqhqZxogNnpWitUJJhX1trQArRVYTUtjZColIAFTjoQHHBz4rVQbePZqvHRD1Iv3U0Xt8CMW20SZO3A2pmuehl55pGNHXXm9lqoXcEI8Etab07aI37boe9xTAlMxyJHnuC_6E38UYDCCWkrEjhzZ1Cij_3mCe989niMJiAcZ81fQGnOlUzP_z1I-o27lOgXt2ymABWwz_WxlAFPrhIie0sqpcttJzztlHEuvgPi1aPO29jQOcJPwpghwCbYs4J3X2RwPQ8TPrxMFHIq4fNuQ_4Ozr8D4KWw44</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Nie, Zihan</creator><creator>Xu, Muhao</creator><creator>Wang, Zhiyong</creator><creator>Lu, Xiaoqi</creator><creator>Song, Weiye</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1835-9770</orcidid><orcidid>https://orcid.org/0009-0003-9115-5146</orcidid></search><sort><creationdate>20241101</creationdate><title>A Review of Application of Deep Learning in Endoscopic Image Processing</title><author>Nie, Zihan ; Xu, Muhao ; Wang, Zhiyong ; Lu, Xiaoqi ; Song, Weiye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-722f0591c294166f5b1fc758c5970ed4cca1755b28c54c4a57e991121f1b19353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Clinical outcomes</topic><topic>Comparative analysis</topic><topic>convolutional neural networks (CNNs)</topic><topic>Customization</topic><topic>Deep learning</topic><topic>Disease prevention</topic><topic>Efficiency</topic><topic>Endoscopy</topic><topic>Health services</topic><topic>Image analysis</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Impact analysis</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Neural networks</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Review</topic><topic>Technology</topic><topic>Technology application</topic><topic>Technology assessment</topic><topic>Tomography</topic><topic>Ultrasonic imaging</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Zihan</creatorcontrib><creatorcontrib>Xu, Muhao</creatorcontrib><creatorcontrib>Wang, Zhiyong</creatorcontrib><creatorcontrib>Lu, Xiaoqi</creatorcontrib><creatorcontrib>Song, Weiye</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Zihan</au><au>Xu, Muhao</au><au>Wang, Zhiyong</au><au>Lu, Xiaoqi</au><au>Song, Weiye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Application of Deep Learning in Endoscopic Image Processing</atitle><jtitle>Journal of imaging</jtitle><addtitle>J Imaging</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>10</volume><issue>11</issue><spage>275</spage><pages>275-</pages><issn>2313-433X</issn><eissn>2313-433X</eissn><abstract>Deep learning, particularly convolutional neural networks (CNNs), has revolutionized endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis through its exceptional ability to extract features and classify complex patterns. This technology automates medical image analysis, alleviating the workload of physicians and enabling a more focused and personalized approach to patient care. However, despite these remarkable achievements, there are still opportunities to further optimize deep learning models for endoscopic image analysis, including addressing limitations such as the requirement for large annotated datasets and the challenge of achieving higher diagnostic precision, particularly for rare or subtle pathologies. This review comprehensively examines the profound impact of deep learning on endoscopic image processing, highlighting its current strengths and limitations. It also explores potential future directions for research and development, outlining strategies to overcome existing challenges and facilitate the integration of deep learning into clinical practice. Ultimately, the goal is to contribute to the ongoing advancement of medical imaging technologies, leading to more accurate, personalized, and optimized medical care for patients.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39590739</pmid><doi>10.3390/jimaging10110275</doi><orcidid>https://orcid.org/0000-0002-1835-9770</orcidid><orcidid>https://orcid.org/0009-0003-9115-5146</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2313-433X
ispartof Journal of imaging, 2024-11, Vol.10 (11), p.275
issn 2313-433X
2313-433X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0c35d7bf66564bdabf6681dfc35e7bf8
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
Artificial intelligence
Artificial neural networks
Automation
Clinical outcomes
Comparative analysis
convolutional neural networks (CNNs)
Customization
Deep learning
Disease prevention
Efficiency
Endoscopy
Health services
Image analysis
Image enhancement
Image processing
Impact analysis
Machine learning
Medical diagnosis
Medical imaging
Methods
Neural networks
R&D
Research & development
Review
Technology
Technology application
Technology assessment
Tomography
Ultrasonic imaging
Workloads
title A Review of Application of Deep Learning in Endoscopic Image Processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Application%20of%20Deep%20Learning%20in%20Endoscopic%20Image%20Processing&rft.jtitle=Journal%20of%20imaging&rft.au=Nie,%20Zihan&rft.date=2024-11-01&rft.volume=10&rft.issue=11&rft.spage=275&rft.pages=275-&rft.issn=2313-433X&rft.eissn=2313-433X&rft_id=info:doi/10.3390/jimaging10110275&rft_dat=%3Cgale_doaj_%3EA818333869%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-722f0591c294166f5b1fc758c5970ed4cca1755b28c54c4a57e991121f1b19353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133051041&rft_id=info:pmid/39590739&rft_galeid=A818333869&rfr_iscdi=true