Loading…
A Review of Application of Deep Learning in Endoscopic Image Processing
Deep learning, particularly convolutional neural networks (CNNs), has revolutionized endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis through its exceptional ability to extract features and classify complex patterns. This technology automates medi...
Saved in:
Published in: | Journal of imaging 2024-11, Vol.10 (11), p.275 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-722f0591c294166f5b1fc758c5970ed4cca1755b28c54c4a57e991121f1b19353 |
container_end_page | |
container_issue | 11 |
container_start_page | 275 |
container_title | Journal of imaging |
container_volume | 10 |
creator | Nie, Zihan Xu, Muhao Wang, Zhiyong Lu, Xiaoqi Song, Weiye |
description | Deep learning, particularly convolutional neural networks (CNNs), has revolutionized endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis through its exceptional ability to extract features and classify complex patterns. This technology automates medical image analysis, alleviating the workload of physicians and enabling a more focused and personalized approach to patient care. However, despite these remarkable achievements, there are still opportunities to further optimize deep learning models for endoscopic image analysis, including addressing limitations such as the requirement for large annotated datasets and the challenge of achieving higher diagnostic precision, particularly for rare or subtle pathologies. This review comprehensively examines the profound impact of deep learning on endoscopic image processing, highlighting its current strengths and limitations. It also explores potential future directions for research and development, outlining strategies to overcome existing challenges and facilitate the integration of deep learning into clinical practice. Ultimately, the goal is to contribute to the ongoing advancement of medical imaging technologies, leading to more accurate, personalized, and optimized medical care for patients. |
doi_str_mv | 10.3390/jimaging10110275 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0c35d7bf66564bdabf6681dfc35e7bf8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818333869</galeid><doaj_id>oai_doaj_org_article_0c35d7bf66564bdabf6681dfc35e7bf8</doaj_id><sourcerecordid>A818333869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-722f0591c294166f5b1fc758c5970ed4cca1755b28c54c4a57e991121f1b19353</originalsourceid><addsrcrecordid>eNptUlFrFDEQXkSxpfbdJ1nwxZermc1ms3mSo9Z6cKCIgm8hm52cOfaSNdmr-O-d7dXaKxJCJt98801mMkXxEtgF54q93fqd2fiwAQbAKimeFKcVB76oOf_-9IF9UpznvGWMgapoq-fFCVdCMcnVaXG9LL_gjcdfZXTlchwHb83kY5iv7xHHco0mBcpS-lBehT5mG0dvyxXlxvJzihZzJveL4pkzQ8bzu_Os-Pbh6uvlx8X60_Xqcrle2LqGaSGryjGhwFaqhqZxogNnpWitUJJhX1trQArRVYTUtjZColIAFTjoQHHBz4rVQbePZqvHRD1Iv3U0Xt8CMW20SZO3A2pmuehl55pGNHXXm9lqoXcEI8Etab07aI37boe9xTAlMxyJHnuC_6E38UYDCCWkrEjhzZ1Cij_3mCe989niMJiAcZ81fQGnOlUzP_z1I-o27lOgXt2ymABWwz_WxlAFPrhIie0sqpcttJzztlHEuvgPi1aPO29jQOcJPwpghwCbYs4J3X2RwPQ8TPrxMFHIq4fNuQ_4Ozr8D4KWw44</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133051041</pqid></control><display><type>article</type><title>A Review of Application of Deep Learning in Endoscopic Image Processing</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Nie, Zihan ; Xu, Muhao ; Wang, Zhiyong ; Lu, Xiaoqi ; Song, Weiye</creator><creatorcontrib>Nie, Zihan ; Xu, Muhao ; Wang, Zhiyong ; Lu, Xiaoqi ; Song, Weiye</creatorcontrib><description>Deep learning, particularly convolutional neural networks (CNNs), has revolutionized endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis through its exceptional ability to extract features and classify complex patterns. This technology automates medical image analysis, alleviating the workload of physicians and enabling a more focused and personalized approach to patient care. However, despite these remarkable achievements, there are still opportunities to further optimize deep learning models for endoscopic image analysis, including addressing limitations such as the requirement for large annotated datasets and the challenge of achieving higher diagnostic precision, particularly for rare or subtle pathologies. This review comprehensively examines the profound impact of deep learning on endoscopic image processing, highlighting its current strengths and limitations. It also explores potential future directions for research and development, outlining strategies to overcome existing challenges and facilitate the integration of deep learning into clinical practice. Ultimately, the goal is to contribute to the ongoing advancement of medical imaging technologies, leading to more accurate, personalized, and optimized medical care for patients.</description><identifier>ISSN: 2313-433X</identifier><identifier>EISSN: 2313-433X</identifier><identifier>DOI: 10.3390/jimaging10110275</identifier><identifier>PMID: 39590739</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Artificial intelligence ; Artificial neural networks ; Automation ; Clinical outcomes ; Comparative analysis ; convolutional neural networks (CNNs) ; Customization ; Deep learning ; Disease prevention ; Efficiency ; Endoscopy ; Health services ; Image analysis ; Image enhancement ; Image processing ; Impact analysis ; Machine learning ; Medical diagnosis ; Medical imaging ; Methods ; Neural networks ; R&D ; Research & development ; Review ; Technology ; Technology application ; Technology assessment ; Tomography ; Ultrasonic imaging ; Workloads</subject><ispartof>Journal of imaging, 2024-11, Vol.10 (11), p.275</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c441t-722f0591c294166f5b1fc758c5970ed4cca1755b28c54c4a57e991121f1b19353</cites><orcidid>0000-0002-1835-9770 ; 0009-0003-9115-5146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3133051041/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3133051041?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39590739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Zihan</creatorcontrib><creatorcontrib>Xu, Muhao</creatorcontrib><creatorcontrib>Wang, Zhiyong</creatorcontrib><creatorcontrib>Lu, Xiaoqi</creatorcontrib><creatorcontrib>Song, Weiye</creatorcontrib><title>A Review of Application of Deep Learning in Endoscopic Image Processing</title><title>Journal of imaging</title><addtitle>J Imaging</addtitle><description>Deep learning, particularly convolutional neural networks (CNNs), has revolutionized endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis through its exceptional ability to extract features and classify complex patterns. This technology automates medical image analysis, alleviating the workload of physicians and enabling a more focused and personalized approach to patient care. However, despite these remarkable achievements, there are still opportunities to further optimize deep learning models for endoscopic image analysis, including addressing limitations such as the requirement for large annotated datasets and the challenge of achieving higher diagnostic precision, particularly for rare or subtle pathologies. This review comprehensively examines the profound impact of deep learning on endoscopic image processing, highlighting its current strengths and limitations. It also explores potential future directions for research and development, outlining strategies to overcome existing challenges and facilitate the integration of deep learning into clinical practice. Ultimately, the goal is to contribute to the ongoing advancement of medical imaging technologies, leading to more accurate, personalized, and optimized medical care for patients.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Clinical outcomes</subject><subject>Comparative analysis</subject><subject>convolutional neural networks (CNNs)</subject><subject>Customization</subject><subject>Deep learning</subject><subject>Disease prevention</subject><subject>Efficiency</subject><subject>Endoscopy</subject><subject>Health services</subject><subject>Image analysis</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Impact analysis</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Neural networks</subject><subject>R&D</subject><subject>Research & development</subject><subject>Review</subject><subject>Technology</subject><subject>Technology application</subject><subject>Technology assessment</subject><subject>Tomography</subject><subject>Ultrasonic imaging</subject><subject>Workloads</subject><issn>2313-433X</issn><issn>2313-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUlFrFDEQXkSxpfbdJ1nwxZermc1ms3mSo9Z6cKCIgm8hm52cOfaSNdmr-O-d7dXaKxJCJt98801mMkXxEtgF54q93fqd2fiwAQbAKimeFKcVB76oOf_-9IF9UpznvGWMgapoq-fFCVdCMcnVaXG9LL_gjcdfZXTlchwHb83kY5iv7xHHco0mBcpS-lBehT5mG0dvyxXlxvJzihZzJveL4pkzQ8bzu_Os-Pbh6uvlx8X60_Xqcrle2LqGaSGryjGhwFaqhqZxogNnpWitUJJhX1trQArRVYTUtjZColIAFTjoQHHBz4rVQbePZqvHRD1Iv3U0Xt8CMW20SZO3A2pmuehl55pGNHXXm9lqoXcEI8Etab07aI37boe9xTAlMxyJHnuC_6E38UYDCCWkrEjhzZ1Cij_3mCe989niMJiAcZ81fQGnOlUzP_z1I-o27lOgXt2ymABWwz_WxlAFPrhIie0sqpcttJzztlHEuvgPi1aPO29jQOcJPwpghwCbYs4J3X2RwPQ8TPrxMFHIq4fNuQ_4Ozr8D4KWw44</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Nie, Zihan</creator><creator>Xu, Muhao</creator><creator>Wang, Zhiyong</creator><creator>Lu, Xiaoqi</creator><creator>Song, Weiye</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1835-9770</orcidid><orcidid>https://orcid.org/0009-0003-9115-5146</orcidid></search><sort><creationdate>20241101</creationdate><title>A Review of Application of Deep Learning in Endoscopic Image Processing</title><author>Nie, Zihan ; Xu, Muhao ; Wang, Zhiyong ; Lu, Xiaoqi ; Song, Weiye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-722f0591c294166f5b1fc758c5970ed4cca1755b28c54c4a57e991121f1b19353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Clinical outcomes</topic><topic>Comparative analysis</topic><topic>convolutional neural networks (CNNs)</topic><topic>Customization</topic><topic>Deep learning</topic><topic>Disease prevention</topic><topic>Efficiency</topic><topic>Endoscopy</topic><topic>Health services</topic><topic>Image analysis</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Impact analysis</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Neural networks</topic><topic>R&D</topic><topic>Research & development</topic><topic>Review</topic><topic>Technology</topic><topic>Technology application</topic><topic>Technology assessment</topic><topic>Tomography</topic><topic>Ultrasonic imaging</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Zihan</creatorcontrib><creatorcontrib>Xu, Muhao</creatorcontrib><creatorcontrib>Wang, Zhiyong</creatorcontrib><creatorcontrib>Lu, Xiaoqi</creatorcontrib><creatorcontrib>Song, Weiye</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Zihan</au><au>Xu, Muhao</au><au>Wang, Zhiyong</au><au>Lu, Xiaoqi</au><au>Song, Weiye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Application of Deep Learning in Endoscopic Image Processing</atitle><jtitle>Journal of imaging</jtitle><addtitle>J Imaging</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>10</volume><issue>11</issue><spage>275</spage><pages>275-</pages><issn>2313-433X</issn><eissn>2313-433X</eissn><abstract>Deep learning, particularly convolutional neural networks (CNNs), has revolutionized endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis through its exceptional ability to extract features and classify complex patterns. This technology automates medical image analysis, alleviating the workload of physicians and enabling a more focused and personalized approach to patient care. However, despite these remarkable achievements, there are still opportunities to further optimize deep learning models for endoscopic image analysis, including addressing limitations such as the requirement for large annotated datasets and the challenge of achieving higher diagnostic precision, particularly for rare or subtle pathologies. This review comprehensively examines the profound impact of deep learning on endoscopic image processing, highlighting its current strengths and limitations. It also explores potential future directions for research and development, outlining strategies to overcome existing challenges and facilitate the integration of deep learning into clinical practice. Ultimately, the goal is to contribute to the ongoing advancement of medical imaging technologies, leading to more accurate, personalized, and optimized medical care for patients.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39590739</pmid><doi>10.3390/jimaging10110275</doi><orcidid>https://orcid.org/0000-0002-1835-9770</orcidid><orcidid>https://orcid.org/0009-0003-9115-5146</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2313-433X |
ispartof | Journal of imaging, 2024-11, Vol.10 (11), p.275 |
issn | 2313-433X 2313-433X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0c35d7bf66564bdabf6681dfc35e7bf8 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Artificial intelligence Artificial neural networks Automation Clinical outcomes Comparative analysis convolutional neural networks (CNNs) Customization Deep learning Disease prevention Efficiency Endoscopy Health services Image analysis Image enhancement Image processing Impact analysis Machine learning Medical diagnosis Medical imaging Methods Neural networks R&D Research & development Review Technology Technology application Technology assessment Tomography Ultrasonic imaging Workloads |
title | A Review of Application of Deep Learning in Endoscopic Image Processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Application%20of%20Deep%20Learning%20in%20Endoscopic%20Image%20Processing&rft.jtitle=Journal%20of%20imaging&rft.au=Nie,%20Zihan&rft.date=2024-11-01&rft.volume=10&rft.issue=11&rft.spage=275&rft.pages=275-&rft.issn=2313-433X&rft.eissn=2313-433X&rft_id=info:doi/10.3390/jimaging10110275&rft_dat=%3Cgale_doaj_%3EA818333869%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-722f0591c294166f5b1fc758c5970ed4cca1755b28c54c4a57e991121f1b19353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133051041&rft_id=info:pmid/39590739&rft_galeid=A818333869&rfr_iscdi=true |