Loading…

Investigation on Electrical and Thermal Performance of Glass Fiber Reinforced Epoxy–MgO Nanocomposites

Epoxy nanocomposites reinforced with glass fiber, have been prepared with various weight percentages (1, 3, and 5 wt.%) of MgO nanofillers to improve their electrical and thermal performance. An increase in MgO nanofiller content up to 3 wt.% tends to enhance surface discharge and corona inception v...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-12, Vol.14 (23), p.8005
Main Authors: Naveen, Janjanam, Sukesh Babu, Myneni, Sarathi, Ramanujam, Velmurugan, Ramachandran, Danikas, Michael G., Karlis, Athanasios
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epoxy nanocomposites reinforced with glass fiber, have been prepared with various weight percentages (1, 3, and 5 wt.%) of MgO nanofillers to improve their electrical and thermal performance. An increase in MgO nanofiller content up to 3 wt.% tends to enhance surface discharge and corona inception voltages measured using fluorescence and UHF methods, under both AC and DC voltage profiles. Reduced initial surface potential along with increased decay rate is observed after inclusion of MgO nanoparticles. Before and after the polarity reversal phenomena, heterocharge formation is observed in the bulk of test specimens. In comparison with other test samples, the 3 wt.% sample had reflected lower electric field enhancement factor. After MgO filler was added to glass fiber reinforced polymer (GFRP) composites, the coefficient of thermal expansion (CTE) has reduced, with the 3 wt.% specimen having the lowest CTE value. TGA measurements revealed an improvement in thermal stability of the GFRP nanocomposites up on the inclusion of MgO nanofillers. Overall, the GFRP nanocomposite sample filled with 3 wt.% nano-MgO outperformed the other test samples in terms of electrical and thermal performance.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14238005