Loading…

Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage

The (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects o...

Full description

Saved in:
Bibliographic Details
Published in:Marine drugs 2023-11, Vol.21 (12), p.616
Main Authors: Fu, Jun, Luo, Xiaowei, Lin, Miaoping, Xiao, Zimin, Huang, Lishan, Wang, Jiaxi, Zhu, Yongyan, Liu, Yonghong, Tao, Huaming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33
cites cdi_FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33
container_end_page
container_issue 12
container_start_page 616
container_title Marine drugs
container_volume 21
creator Fu, Jun
Luo, Xiaowei
Lin, Miaoping
Xiao, Zimin
Huang, Lishan
Wang, Jiaxi
Zhu, Yongyan
Liu, Yonghong
Tao, Huaming
description The (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin ( ), 12, 13-dihydroxy-fumitremorgin C ( ), and helvolic acid ( ) from the cultures of a deep-sea-derived fungus, sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy.
doi_str_mv 10.3390/md21120616
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0c6dcbc1b93c458ab371d021e315bd4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0c6dcbc1b93c458ab371d021e315bd4b</doaj_id><sourcerecordid>2905516339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33</originalsourceid><addsrcrecordid>eNpdkdtu1DAQhiMEoqVwwwMgS9wgpIAdx3ZyWRVaVuoKJODa8mG8eJXEwYeKfXvcbimIqxmNvvnn8DfNS4LfUTri97PtCOkwJ_xRc0o4x20ti8f_5CfNs5T2GFM2jP3T5oQOhHYjFadN2KroF2gvy7Lz7QeI_gYsupp8yOGXX9CXGOaQIaHzksP6Q-0OKAf0taxrhJTQ9mCCVibXPoVy0RBNmULyCW0WByb7sKCqslUm3nXD8-aJU1OCF_fxrPl--fHbxaf2-vPV5uL8ujU9EbntrdFC65ETxR1Twlk2KDKKeii4zpixd50Wru84xtYNFDimMHAHbjAMO0rPms1R1wa1l2v0s4oHGZSXd4UQd1LF7M0EEhtepxmiR2r6OkZTQSzuCFDCtO111Xpz1Fpj-FkgZTn7ZGCa1AKhJNmNmDHC66Mr-vo_dB9KXOqlt1Q_YEYFq9TbI1W_klIE97AgwfLWUvnX0gq_upcsegb7gP7xkP4GwDac7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904805375</pqid></control><display><type>article</type><title>Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fu, Jun ; Luo, Xiaowei ; Lin, Miaoping ; Xiao, Zimin ; Huang, Lishan ; Wang, Jiaxi ; Zhu, Yongyan ; Liu, Yonghong ; Tao, Huaming</creator><creatorcontrib>Fu, Jun ; Luo, Xiaowei ; Lin, Miaoping ; Xiao, Zimin ; Huang, Lishan ; Wang, Jiaxi ; Zhu, Yongyan ; Liu, Yonghong ; Tao, Huaming</creatorcontrib><description>The (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin ( ), 12, 13-dihydroxy-fumitremorgin C ( ), and helvolic acid ( ) from the cultures of a deep-sea-derived fungus, sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy.</description><identifier>ISSN: 1660-3397</identifier><identifier>EISSN: 1660-3397</identifier><identifier>DOI: 10.3390/md21120616</identifier><identifier>PMID: 38132937</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Antitubercular agents ; Autophagy ; Cell growth ; Cytokines ; Cytotoxicity ; Deep sea ; Deep water ; Drug development ; Drug resistance ; Drugs ; Fungi ; Gliotoxin ; Health risks ; Helvolic acid ; Infections ; Infectious diseases ; Investigations ; Leukemia ; Macrophages ; marine natural product ; Microscopy ; Multidrug resistance ; Mycobacterium tuberculosis (MTB) ; Natural products ; Public health ; Tuberculosis ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α</subject><ispartof>Marine drugs, 2023-11, Vol.21 (12), p.616</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33</citedby><cites>FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33</cites><orcidid>0000-0002-4799-1345 ; 0000-0001-8327-3108 ; 0000-0002-2114-1609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904805375/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904805375?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25740,27911,27912,36999,37000,44577,74881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38132937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Jun</creatorcontrib><creatorcontrib>Luo, Xiaowei</creatorcontrib><creatorcontrib>Lin, Miaoping</creatorcontrib><creatorcontrib>Xiao, Zimin</creatorcontrib><creatorcontrib>Huang, Lishan</creatorcontrib><creatorcontrib>Wang, Jiaxi</creatorcontrib><creatorcontrib>Zhu, Yongyan</creatorcontrib><creatorcontrib>Liu, Yonghong</creatorcontrib><creatorcontrib>Tao, Huaming</creatorcontrib><title>Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage</title><title>Marine drugs</title><addtitle>Mar Drugs</addtitle><description>The (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin ( ), 12, 13-dihydroxy-fumitremorgin C ( ), and helvolic acid ( ) from the cultures of a deep-sea-derived fungus, sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy.</description><subject>Acids</subject><subject>Antitubercular agents</subject><subject>Autophagy</subject><subject>Cell growth</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Deep sea</subject><subject>Deep water</subject><subject>Drug development</subject><subject>Drug resistance</subject><subject>Drugs</subject><subject>Fungi</subject><subject>Gliotoxin</subject><subject>Health risks</subject><subject>Helvolic acid</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Investigations</subject><subject>Leukemia</subject><subject>Macrophages</subject><subject>marine natural product</subject><subject>Microscopy</subject><subject>Multidrug resistance</subject><subject>Mycobacterium tuberculosis (MTB)</subject><subject>Natural products</subject><subject>Public health</subject><subject>Tuberculosis</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><issn>1660-3397</issn><issn>1660-3397</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkdtu1DAQhiMEoqVwwwMgS9wgpIAdx3ZyWRVaVuoKJODa8mG8eJXEwYeKfXvcbimIqxmNvvnn8DfNS4LfUTri97PtCOkwJ_xRc0o4x20ti8f_5CfNs5T2GFM2jP3T5oQOhHYjFadN2KroF2gvy7Lz7QeI_gYsupp8yOGXX9CXGOaQIaHzksP6Q-0OKAf0taxrhJTQ9mCCVibXPoVy0RBNmULyCW0WByb7sKCqslUm3nXD8-aJU1OCF_fxrPl--fHbxaf2-vPV5uL8ujU9EbntrdFC65ETxR1Twlk2KDKKeii4zpixd50Wru84xtYNFDimMHAHbjAMO0rPms1R1wa1l2v0s4oHGZSXd4UQd1LF7M0EEhtepxmiR2r6OkZTQSzuCFDCtO111Xpz1Fpj-FkgZTn7ZGCa1AKhJNmNmDHC66Mr-vo_dB9KXOqlt1Q_YEYFq9TbI1W_klIE97AgwfLWUvnX0gq_upcsegb7gP7xkP4GwDac7A</recordid><startdate>20231128</startdate><enddate>20231128</enddate><creator>Fu, Jun</creator><creator>Luo, Xiaowei</creator><creator>Lin, Miaoping</creator><creator>Xiao, Zimin</creator><creator>Huang, Lishan</creator><creator>Wang, Jiaxi</creator><creator>Zhu, Yongyan</creator><creator>Liu, Yonghong</creator><creator>Tao, Huaming</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TN</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4799-1345</orcidid><orcidid>https://orcid.org/0000-0001-8327-3108</orcidid><orcidid>https://orcid.org/0000-0002-2114-1609</orcidid></search><sort><creationdate>20231128</creationdate><title>Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage</title><author>Fu, Jun ; Luo, Xiaowei ; Lin, Miaoping ; Xiao, Zimin ; Huang, Lishan ; Wang, Jiaxi ; Zhu, Yongyan ; Liu, Yonghong ; Tao, Huaming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Antitubercular agents</topic><topic>Autophagy</topic><topic>Cell growth</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Deep sea</topic><topic>Deep water</topic><topic>Drug development</topic><topic>Drug resistance</topic><topic>Drugs</topic><topic>Fungi</topic><topic>Gliotoxin</topic><topic>Health risks</topic><topic>Helvolic acid</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Investigations</topic><topic>Leukemia</topic><topic>Macrophages</topic><topic>marine natural product</topic><topic>Microscopy</topic><topic>Multidrug resistance</topic><topic>Mycobacterium tuberculosis (MTB)</topic><topic>Natural products</topic><topic>Public health</topic><topic>Tuberculosis</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Jun</creatorcontrib><creatorcontrib>Luo, Xiaowei</creatorcontrib><creatorcontrib>Lin, Miaoping</creatorcontrib><creatorcontrib>Xiao, Zimin</creatorcontrib><creatorcontrib>Huang, Lishan</creatorcontrib><creatorcontrib>Wang, Jiaxi</creatorcontrib><creatorcontrib>Zhu, Yongyan</creatorcontrib><creatorcontrib>Liu, Yonghong</creatorcontrib><creatorcontrib>Tao, Huaming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Marine drugs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Jun</au><au>Luo, Xiaowei</au><au>Lin, Miaoping</au><au>Xiao, Zimin</au><au>Huang, Lishan</au><au>Wang, Jiaxi</au><au>Zhu, Yongyan</au><au>Liu, Yonghong</au><au>Tao, Huaming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage</atitle><jtitle>Marine drugs</jtitle><addtitle>Mar Drugs</addtitle><date>2023-11-28</date><risdate>2023</risdate><volume>21</volume><issue>12</issue><spage>616</spage><pages>616-</pages><issn>1660-3397</issn><eissn>1660-3397</eissn><abstract>The (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin ( ), 12, 13-dihydroxy-fumitremorgin C ( ), and helvolic acid ( ) from the cultures of a deep-sea-derived fungus, sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38132937</pmid><doi>10.3390/md21120616</doi><orcidid>https://orcid.org/0000-0002-4799-1345</orcidid><orcidid>https://orcid.org/0000-0001-8327-3108</orcidid><orcidid>https://orcid.org/0000-0002-2114-1609</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-3397
ispartof Marine drugs, 2023-11, Vol.21 (12), p.616
issn 1660-3397
1660-3397
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0c6dcbc1b93c458ab371d021e315bd4b
source Publicly Available Content Database; PubMed Central
subjects Acids
Antitubercular agents
Autophagy
Cell growth
Cytokines
Cytotoxicity
Deep sea
Deep water
Drug development
Drug resistance
Drugs
Fungi
Gliotoxin
Health risks
Helvolic acid
Infections
Infectious diseases
Investigations
Leukemia
Macrophages
marine natural product
Microscopy
Multidrug resistance
Mycobacterium tuberculosis (MTB)
Natural products
Public health
Tuberculosis
Tumor necrosis factor-TNF
Tumor necrosis factor-α
title Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine-Fungi-Derived%20Gliotoxin%20Promotes%20Autophagy%20to%20Suppress%20Mycobacteria%20tuberculosis%20Infection%20in%20Macrophage&rft.jtitle=Marine%20drugs&rft.au=Fu,%20Jun&rft.date=2023-11-28&rft.volume=21&rft.issue=12&rft.spage=616&rft.pages=616-&rft.issn=1660-3397&rft.eissn=1660-3397&rft_id=info:doi/10.3390/md21120616&rft_dat=%3Cproquest_doaj_%3E2905516339%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904805375&rft_id=info:pmid/38132937&rfr_iscdi=true