Loading…
Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage
The (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects o...
Saved in:
Published in: | Marine drugs 2023-11, Vol.21 (12), p.616 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33 |
container_end_page | |
container_issue | 12 |
container_start_page | 616 |
container_title | Marine drugs |
container_volume | 21 |
creator | Fu, Jun Luo, Xiaowei Lin, Miaoping Xiao, Zimin Huang, Lishan Wang, Jiaxi Zhu, Yongyan Liu, Yonghong Tao, Huaming |
description | The
(MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin (
), 12, 13-dihydroxy-fumitremorgin C (
), and helvolic acid (
) from the cultures of a deep-sea-derived fungus,
sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy. |
doi_str_mv | 10.3390/md21120616 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0c6dcbc1b93c458ab371d021e315bd4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0c6dcbc1b93c458ab371d021e315bd4b</doaj_id><sourcerecordid>2905516339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33</originalsourceid><addsrcrecordid>eNpdkdtu1DAQhiMEoqVwwwMgS9wgpIAdx3ZyWRVaVuoKJODa8mG8eJXEwYeKfXvcbimIqxmNvvnn8DfNS4LfUTri97PtCOkwJ_xRc0o4x20ti8f_5CfNs5T2GFM2jP3T5oQOhHYjFadN2KroF2gvy7Lz7QeI_gYsupp8yOGXX9CXGOaQIaHzksP6Q-0OKAf0taxrhJTQ9mCCVibXPoVy0RBNmULyCW0WByb7sKCqslUm3nXD8-aJU1OCF_fxrPl--fHbxaf2-vPV5uL8ujU9EbntrdFC65ETxR1Twlk2KDKKeii4zpixd50Wru84xtYNFDimMHAHbjAMO0rPms1R1wa1l2v0s4oHGZSXd4UQd1LF7M0EEhtepxmiR2r6OkZTQSzuCFDCtO111Xpz1Fpj-FkgZTn7ZGCa1AKhJNmNmDHC66Mr-vo_dB9KXOqlt1Q_YEYFq9TbI1W_klIE97AgwfLWUvnX0gq_upcsegb7gP7xkP4GwDac7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904805375</pqid></control><display><type>article</type><title>Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fu, Jun ; Luo, Xiaowei ; Lin, Miaoping ; Xiao, Zimin ; Huang, Lishan ; Wang, Jiaxi ; Zhu, Yongyan ; Liu, Yonghong ; Tao, Huaming</creator><creatorcontrib>Fu, Jun ; Luo, Xiaowei ; Lin, Miaoping ; Xiao, Zimin ; Huang, Lishan ; Wang, Jiaxi ; Zhu, Yongyan ; Liu, Yonghong ; Tao, Huaming</creatorcontrib><description>The
(MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin (
), 12, 13-dihydroxy-fumitremorgin C (
), and helvolic acid (
) from the cultures of a deep-sea-derived fungus,
sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy.</description><identifier>ISSN: 1660-3397</identifier><identifier>EISSN: 1660-3397</identifier><identifier>DOI: 10.3390/md21120616</identifier><identifier>PMID: 38132937</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Antitubercular agents ; Autophagy ; Cell growth ; Cytokines ; Cytotoxicity ; Deep sea ; Deep water ; Drug development ; Drug resistance ; Drugs ; Fungi ; Gliotoxin ; Health risks ; Helvolic acid ; Infections ; Infectious diseases ; Investigations ; Leukemia ; Macrophages ; marine natural product ; Microscopy ; Multidrug resistance ; Mycobacterium tuberculosis (MTB) ; Natural products ; Public health ; Tuberculosis ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α</subject><ispartof>Marine drugs, 2023-11, Vol.21 (12), p.616</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33</citedby><cites>FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33</cites><orcidid>0000-0002-4799-1345 ; 0000-0001-8327-3108 ; 0000-0002-2114-1609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904805375/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904805375?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25740,27911,27912,36999,37000,44577,74881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38132937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Jun</creatorcontrib><creatorcontrib>Luo, Xiaowei</creatorcontrib><creatorcontrib>Lin, Miaoping</creatorcontrib><creatorcontrib>Xiao, Zimin</creatorcontrib><creatorcontrib>Huang, Lishan</creatorcontrib><creatorcontrib>Wang, Jiaxi</creatorcontrib><creatorcontrib>Zhu, Yongyan</creatorcontrib><creatorcontrib>Liu, Yonghong</creatorcontrib><creatorcontrib>Tao, Huaming</creatorcontrib><title>Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage</title><title>Marine drugs</title><addtitle>Mar Drugs</addtitle><description>The
(MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin (
), 12, 13-dihydroxy-fumitremorgin C (
), and helvolic acid (
) from the cultures of a deep-sea-derived fungus,
sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy.</description><subject>Acids</subject><subject>Antitubercular agents</subject><subject>Autophagy</subject><subject>Cell growth</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Deep sea</subject><subject>Deep water</subject><subject>Drug development</subject><subject>Drug resistance</subject><subject>Drugs</subject><subject>Fungi</subject><subject>Gliotoxin</subject><subject>Health risks</subject><subject>Helvolic acid</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Investigations</subject><subject>Leukemia</subject><subject>Macrophages</subject><subject>marine natural product</subject><subject>Microscopy</subject><subject>Multidrug resistance</subject><subject>Mycobacterium tuberculosis (MTB)</subject><subject>Natural products</subject><subject>Public health</subject><subject>Tuberculosis</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><issn>1660-3397</issn><issn>1660-3397</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkdtu1DAQhiMEoqVwwwMgS9wgpIAdx3ZyWRVaVuoKJODa8mG8eJXEwYeKfXvcbimIqxmNvvnn8DfNS4LfUTri97PtCOkwJ_xRc0o4x20ti8f_5CfNs5T2GFM2jP3T5oQOhHYjFadN2KroF2gvy7Lz7QeI_gYsupp8yOGXX9CXGOaQIaHzksP6Q-0OKAf0taxrhJTQ9mCCVibXPoVy0RBNmULyCW0WByb7sKCqslUm3nXD8-aJU1OCF_fxrPl--fHbxaf2-vPV5uL8ujU9EbntrdFC65ETxR1Twlk2KDKKeii4zpixd50Wru84xtYNFDimMHAHbjAMO0rPms1R1wa1l2v0s4oHGZSXd4UQd1LF7M0EEhtepxmiR2r6OkZTQSzuCFDCtO111Xpz1Fpj-FkgZTn7ZGCa1AKhJNmNmDHC66Mr-vo_dB9KXOqlt1Q_YEYFq9TbI1W_klIE97AgwfLWUvnX0gq_upcsegb7gP7xkP4GwDac7A</recordid><startdate>20231128</startdate><enddate>20231128</enddate><creator>Fu, Jun</creator><creator>Luo, Xiaowei</creator><creator>Lin, Miaoping</creator><creator>Xiao, Zimin</creator><creator>Huang, Lishan</creator><creator>Wang, Jiaxi</creator><creator>Zhu, Yongyan</creator><creator>Liu, Yonghong</creator><creator>Tao, Huaming</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TN</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4799-1345</orcidid><orcidid>https://orcid.org/0000-0001-8327-3108</orcidid><orcidid>https://orcid.org/0000-0002-2114-1609</orcidid></search><sort><creationdate>20231128</creationdate><title>Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage</title><author>Fu, Jun ; Luo, Xiaowei ; Lin, Miaoping ; Xiao, Zimin ; Huang, Lishan ; Wang, Jiaxi ; Zhu, Yongyan ; Liu, Yonghong ; Tao, Huaming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Antitubercular agents</topic><topic>Autophagy</topic><topic>Cell growth</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Deep sea</topic><topic>Deep water</topic><topic>Drug development</topic><topic>Drug resistance</topic><topic>Drugs</topic><topic>Fungi</topic><topic>Gliotoxin</topic><topic>Health risks</topic><topic>Helvolic acid</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Investigations</topic><topic>Leukemia</topic><topic>Macrophages</topic><topic>marine natural product</topic><topic>Microscopy</topic><topic>Multidrug resistance</topic><topic>Mycobacterium tuberculosis (MTB)</topic><topic>Natural products</topic><topic>Public health</topic><topic>Tuberculosis</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Jun</creatorcontrib><creatorcontrib>Luo, Xiaowei</creatorcontrib><creatorcontrib>Lin, Miaoping</creatorcontrib><creatorcontrib>Xiao, Zimin</creatorcontrib><creatorcontrib>Huang, Lishan</creatorcontrib><creatorcontrib>Wang, Jiaxi</creatorcontrib><creatorcontrib>Zhu, Yongyan</creatorcontrib><creatorcontrib>Liu, Yonghong</creatorcontrib><creatorcontrib>Tao, Huaming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Marine drugs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Jun</au><au>Luo, Xiaowei</au><au>Lin, Miaoping</au><au>Xiao, Zimin</au><au>Huang, Lishan</au><au>Wang, Jiaxi</au><au>Zhu, Yongyan</au><au>Liu, Yonghong</au><au>Tao, Huaming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage</atitle><jtitle>Marine drugs</jtitle><addtitle>Mar Drugs</addtitle><date>2023-11-28</date><risdate>2023</risdate><volume>21</volume><issue>12</issue><spage>616</spage><pages>616-</pages><issn>1660-3397</issn><eissn>1660-3397</eissn><abstract>The
(MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin (
), 12, 13-dihydroxy-fumitremorgin C (
), and helvolic acid (
) from the cultures of a deep-sea-derived fungus,
sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38132937</pmid><doi>10.3390/md21120616</doi><orcidid>https://orcid.org/0000-0002-4799-1345</orcidid><orcidid>https://orcid.org/0000-0001-8327-3108</orcidid><orcidid>https://orcid.org/0000-0002-2114-1609</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-3397 |
ispartof | Marine drugs, 2023-11, Vol.21 (12), p.616 |
issn | 1660-3397 1660-3397 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0c6dcbc1b93c458ab371d021e315bd4b |
source | Publicly Available Content Database; PubMed Central |
subjects | Acids Antitubercular agents Autophagy Cell growth Cytokines Cytotoxicity Deep sea Deep water Drug development Drug resistance Drugs Fungi Gliotoxin Health risks Helvolic acid Infections Infectious diseases Investigations Leukemia Macrophages marine natural product Microscopy Multidrug resistance Mycobacterium tuberculosis (MTB) Natural products Public health Tuberculosis Tumor necrosis factor-TNF Tumor necrosis factor-α |
title | Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine-Fungi-Derived%20Gliotoxin%20Promotes%20Autophagy%20to%20Suppress%20Mycobacteria%20tuberculosis%20Infection%20in%20Macrophage&rft.jtitle=Marine%20drugs&rft.au=Fu,%20Jun&rft.date=2023-11-28&rft.volume=21&rft.issue=12&rft.spage=616&rft.pages=616-&rft.issn=1660-3397&rft.eissn=1660-3397&rft_id=info:doi/10.3390/md21120616&rft_dat=%3Cproquest_doaj_%3E2905516339%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-4dcb7bb961a6f5a7fd58a197211ef2cc94f2b7f42600df83e603e86fef8c50f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904805375&rft_id=info:pmid/38132937&rfr_iscdi=true |