Loading…

Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations

We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple computer algebra system. The considered nonlinear equation is transformed into a Hirota bilinear form, and symbolic computations are made for solving both the nonlinear equation a...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2019, Vol.2019 (2019), p.1-6
Main Authors: Chen, Shou-Ting, Ma, Wen-Xiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3
cites cdi_FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3
container_end_page 6
container_issue 2019
container_start_page 1
container_title Complexity (New York, N.Y.)
container_volume 2019
creator Chen, Shou-Ting
Ma, Wen-Xiu
description We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple computer algebra system. The considered nonlinear equation is transformed into a Hirota bilinear form, and symbolic computations are made for solving both the nonlinear equation and the corresponding bilinear equation. A few classes of exact and explicit solutions are generated from different ansätze on solution forms, including traveling wave solutions, two-wave solutions, and polynomial solutions.
doi_str_mv 10.1155/2019/8787460
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0c7da243d65043ccb4f607e42c7657df</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0c7da243d65043ccb4f607e42c7657df</doaj_id><sourcerecordid>2175234671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqVw44wscaSh_vbmCKulVC3iUDhbY3vcepuN0zgpLL-ebFOVI6cZzTzzzozeqnrL6EfGlDrllDWnK7MyUtNn1RGjTVNTxfXzQ250zefWy-pVKVtKaaOFOapw8xv8SK5yO40pd4WMmQA5ww4HaNMfDORzvs57uG-xK7f7-iJ3ucfW32B3m8nmboLDGLlPQL5B3yK52u9cbpMn67zrp_GhXV5XLyK0Bd88xuPq55fNj_XX-vL72fn602XtJddjHWgMzkkBCr2ERoOLjaOSrZzm2jPRRIlBcIdKGnRROa8Yzn9AYA1VCsVxdb7ohgxb2w9pB8PeZkj2oZCHawvDmHyLlnoTgEsRtKJSeO9k1NSg5N5oZUKctd4vWv2Q7yYso93maejm8y1nRnEhtWEzdbJQfsilDBiftjJqD6bYgyn20ZQZ_7DgN6kL8Cv9j3630DgzGOEfzYSgKy7-Aq6ilzE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175234671</pqid></control><display><type>article</type><title>Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations</title><source>Wiley-Blackwell Open Access Collection</source><creator>Chen, Shou-Ting ; Ma, Wen-Xiu</creator><contributor>Volchenkov, Dimitri ; Dimitri Volchenkov</contributor><creatorcontrib>Chen, Shou-Ting ; Ma, Wen-Xiu ; Volchenkov, Dimitri ; Dimitri Volchenkov</creatorcontrib><description>We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple computer algebra system. The considered nonlinear equation is transformed into a Hirota bilinear form, and symbolic computations are made for solving both the nonlinear equation and the corresponding bilinear equation. A few classes of exact and explicit solutions are generated from different ansätze on solution forms, including traveling wave solutions, two-wave solutions, and polynomial solutions.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2019/8787460</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Applied mathematics ; Computer algebra ; Fourier transforms ; Nonlinear equations ; Ordinary differential equations ; Partial differential equations ; Physics ; Polynomials ; Symmetry ; Traveling waves</subject><ispartof>Complexity (New York, N.Y.), 2019, Vol.2019 (2019), p.1-6</ispartof><rights>Copyright © 2019 Shou-Ting Chen and Wen-Xiu Ma.</rights><rights>Copyright © 2019 Shou-Ting Chen and Wen-Xiu Ma. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3</citedby><cites>FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3</cites><orcidid>0000-0001-5309-1493 ; 0000-0002-7742-312X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Volchenkov, Dimitri</contributor><contributor>Dimitri Volchenkov</contributor><creatorcontrib>Chen, Shou-Ting</creatorcontrib><creatorcontrib>Ma, Wen-Xiu</creatorcontrib><title>Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations</title><title>Complexity (New York, N.Y.)</title><description>We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple computer algebra system. The considered nonlinear equation is transformed into a Hirota bilinear form, and symbolic computations are made for solving both the nonlinear equation and the corresponding bilinear equation. A few classes of exact and explicit solutions are generated from different ansätze on solution forms, including traveling wave solutions, two-wave solutions, and polynomial solutions.</description><subject>Applied mathematics</subject><subject>Computer algebra</subject><subject>Fourier transforms</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Symmetry</subject><subject>Traveling waves</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhiMEEqVw44wscaSh_vbmCKulVC3iUDhbY3vcepuN0zgpLL-ebFOVI6cZzTzzzozeqnrL6EfGlDrllDWnK7MyUtNn1RGjTVNTxfXzQ250zefWy-pVKVtKaaOFOapw8xv8SK5yO40pd4WMmQA5ww4HaNMfDORzvs57uG-xK7f7-iJ3ucfW32B3m8nmboLDGLlPQL5B3yK52u9cbpMn67zrp_GhXV5XLyK0Bd88xuPq55fNj_XX-vL72fn602XtJddjHWgMzkkBCr2ERoOLjaOSrZzm2jPRRIlBcIdKGnRROa8Yzn9AYA1VCsVxdb7ohgxb2w9pB8PeZkj2oZCHawvDmHyLlnoTgEsRtKJSeO9k1NSg5N5oZUKctd4vWv2Q7yYso93maejm8y1nRnEhtWEzdbJQfsilDBiftjJqD6bYgyn20ZQZ_7DgN6kL8Cv9j3630DgzGOEfzYSgKy7-Aq6ilzE</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Chen, Shou-Ting</creator><creator>Ma, Wen-Xiu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5309-1493</orcidid><orcidid>https://orcid.org/0000-0002-7742-312X</orcidid></search><sort><creationdate>2019</creationdate><title>Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations</title><author>Chen, Shou-Ting ; Ma, Wen-Xiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied mathematics</topic><topic>Computer algebra</topic><topic>Fourier transforms</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Symmetry</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shou-Ting</creatorcontrib><creatorcontrib>Ma, Wen-Xiu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shou-Ting</au><au>Ma, Wen-Xiu</au><au>Volchenkov, Dimitri</au><au>Dimitri Volchenkov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple computer algebra system. The considered nonlinear equation is transformed into a Hirota bilinear form, and symbolic computations are made for solving both the nonlinear equation and the corresponding bilinear equation. A few classes of exact and explicit solutions are generated from different ansätze on solution forms, including traveling wave solutions, two-wave solutions, and polynomial solutions.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/8787460</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5309-1493</orcidid><orcidid>https://orcid.org/0000-0002-7742-312X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2019, Vol.2019 (2019), p.1-6
issn 1076-2787
1099-0526
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0c7da243d65043ccb4f607e42c7657df
source Wiley-Blackwell Open Access Collection
subjects Applied mathematics
Computer algebra
Fourier transforms
Nonlinear equations
Ordinary differential equations
Partial differential equations
Physics
Polynomials
Symmetry
Traveling waves
title Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Solutions%20to%20a%20Generalized%20Bogoyavlensky-Konopelchenko%20Equation%20via%20Maple%20Symbolic%20Computations&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Chen,%20Shou-Ting&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2019/8787460&rft_dat=%3Cproquest_doaj_%3E2175234671%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2175234671&rft_id=info:pmid/&rfr_iscdi=true