Loading…
Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations
We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple computer algebra system. The considered nonlinear equation is transformed into a Hirota bilinear form, and symbolic computations are made for solving both the nonlinear equation a...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2019, Vol.2019 (2019), p.1-6 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3 |
container_end_page | 6 |
container_issue | 2019 |
container_start_page | 1 |
container_title | Complexity (New York, N.Y.) |
container_volume | 2019 |
creator | Chen, Shou-Ting Ma, Wen-Xiu |
description | We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple computer algebra system. The considered nonlinear equation is transformed into a Hirota bilinear form, and symbolic computations are made for solving both the nonlinear equation and the corresponding bilinear equation. A few classes of exact and explicit solutions are generated from different ansätze on solution forms, including traveling wave solutions, two-wave solutions, and polynomial solutions. |
doi_str_mv | 10.1155/2019/8787460 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0c7da243d65043ccb4f607e42c7657df</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0c7da243d65043ccb4f607e42c7657df</doaj_id><sourcerecordid>2175234671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqVw44wscaSh_vbmCKulVC3iUDhbY3vcepuN0zgpLL-ebFOVI6cZzTzzzozeqnrL6EfGlDrllDWnK7MyUtNn1RGjTVNTxfXzQ250zefWy-pVKVtKaaOFOapw8xv8SK5yO40pd4WMmQA5ww4HaNMfDORzvs57uG-xK7f7-iJ3ucfW32B3m8nmboLDGLlPQL5B3yK52u9cbpMn67zrp_GhXV5XLyK0Bd88xuPq55fNj_XX-vL72fn602XtJddjHWgMzkkBCr2ERoOLjaOSrZzm2jPRRIlBcIdKGnRROa8Yzn9AYA1VCsVxdb7ohgxb2w9pB8PeZkj2oZCHawvDmHyLlnoTgEsRtKJSeO9k1NSg5N5oZUKctd4vWv2Q7yYso93maejm8y1nRnEhtWEzdbJQfsilDBiftjJqD6bYgyn20ZQZ_7DgN6kL8Cv9j3630DgzGOEfzYSgKy7-Aq6ilzE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175234671</pqid></control><display><type>article</type><title>Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations</title><source>Wiley-Blackwell Open Access Collection</source><creator>Chen, Shou-Ting ; Ma, Wen-Xiu</creator><contributor>Volchenkov, Dimitri ; Dimitri Volchenkov</contributor><creatorcontrib>Chen, Shou-Ting ; Ma, Wen-Xiu ; Volchenkov, Dimitri ; Dimitri Volchenkov</creatorcontrib><description>We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple computer algebra system. The considered nonlinear equation is transformed into a Hirota bilinear form, and symbolic computations are made for solving both the nonlinear equation and the corresponding bilinear equation. A few classes of exact and explicit solutions are generated from different ansätze on solution forms, including traveling wave solutions, two-wave solutions, and polynomial solutions.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2019/8787460</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Applied mathematics ; Computer algebra ; Fourier transforms ; Nonlinear equations ; Ordinary differential equations ; Partial differential equations ; Physics ; Polynomials ; Symmetry ; Traveling waves</subject><ispartof>Complexity (New York, N.Y.), 2019, Vol.2019 (2019), p.1-6</ispartof><rights>Copyright © 2019 Shou-Ting Chen and Wen-Xiu Ma.</rights><rights>Copyright © 2019 Shou-Ting Chen and Wen-Xiu Ma. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3</citedby><cites>FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3</cites><orcidid>0000-0001-5309-1493 ; 0000-0002-7742-312X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Volchenkov, Dimitri</contributor><contributor>Dimitri Volchenkov</contributor><creatorcontrib>Chen, Shou-Ting</creatorcontrib><creatorcontrib>Ma, Wen-Xiu</creatorcontrib><title>Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations</title><title>Complexity (New York, N.Y.)</title><description>We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple computer algebra system. The considered nonlinear equation is transformed into a Hirota bilinear form, and symbolic computations are made for solving both the nonlinear equation and the corresponding bilinear equation. A few classes of exact and explicit solutions are generated from different ansätze on solution forms, including traveling wave solutions, two-wave solutions, and polynomial solutions.</description><subject>Applied mathematics</subject><subject>Computer algebra</subject><subject>Fourier transforms</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Symmetry</subject><subject>Traveling waves</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhiMEEqVw44wscaSh_vbmCKulVC3iUDhbY3vcepuN0zgpLL-ebFOVI6cZzTzzzozeqnrL6EfGlDrllDWnK7MyUtNn1RGjTVNTxfXzQ250zefWy-pVKVtKaaOFOapw8xv8SK5yO40pd4WMmQA5ww4HaNMfDORzvs57uG-xK7f7-iJ3ucfW32B3m8nmboLDGLlPQL5B3yK52u9cbpMn67zrp_GhXV5XLyK0Bd88xuPq55fNj_XX-vL72fn602XtJddjHWgMzkkBCr2ERoOLjaOSrZzm2jPRRIlBcIdKGnRROa8Yzn9AYA1VCsVxdb7ohgxb2w9pB8PeZkj2oZCHawvDmHyLlnoTgEsRtKJSeO9k1NSg5N5oZUKctd4vWv2Q7yYso93maejm8y1nRnEhtWEzdbJQfsilDBiftjJqD6bYgyn20ZQZ_7DgN6kL8Cv9j3630DgzGOEfzYSgKy7-Aq6ilzE</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Chen, Shou-Ting</creator><creator>Ma, Wen-Xiu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5309-1493</orcidid><orcidid>https://orcid.org/0000-0002-7742-312X</orcidid></search><sort><creationdate>2019</creationdate><title>Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations</title><author>Chen, Shou-Ting ; Ma, Wen-Xiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied mathematics</topic><topic>Computer algebra</topic><topic>Fourier transforms</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Symmetry</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shou-Ting</creatorcontrib><creatorcontrib>Ma, Wen-Xiu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shou-Ting</au><au>Ma, Wen-Xiu</au><au>Volchenkov, Dimitri</au><au>Dimitri Volchenkov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple computer algebra system. The considered nonlinear equation is transformed into a Hirota bilinear form, and symbolic computations are made for solving both the nonlinear equation and the corresponding bilinear equation. A few classes of exact and explicit solutions are generated from different ansätze on solution forms, including traveling wave solutions, two-wave solutions, and polynomial solutions.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/8787460</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5309-1493</orcidid><orcidid>https://orcid.org/0000-0002-7742-312X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2019, Vol.2019 (2019), p.1-6 |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0c7da243d65043ccb4f607e42c7657df |
source | Wiley-Blackwell Open Access Collection |
subjects | Applied mathematics Computer algebra Fourier transforms Nonlinear equations Ordinary differential equations Partial differential equations Physics Polynomials Symmetry Traveling waves |
title | Exact Solutions to a Generalized Bogoyavlensky-Konopelchenko Equation via Maple Symbolic Computations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Solutions%20to%20a%20Generalized%20Bogoyavlensky-Konopelchenko%20Equation%20via%20Maple%20Symbolic%20Computations&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Chen,%20Shou-Ting&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2019/8787460&rft_dat=%3Cproquest_doaj_%3E2175234671%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-d0fdbb43a5ec4a96abf9b0418b626c139f4ed32be547ebf5bc51e963ad19055e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2175234671&rft_id=info:pmid/&rfr_iscdi=true |