Loading…

Laser Cutting of Non-Woven Fabric Using UV Nanosecond Pulsed Laser

The efficient cutting of non-woven fabric shows great significance to the development of the textile industry. In recent years, laser cutting technology has been widely applied in the clothing industry due to its high efficiency and cutting quality. In this work, a UV nanosecond pulsed laser with a...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2024-11, Vol.15 (11), p.1390
Main Authors: Fu, Jiajun, Liu, Chao, Zhao, Runhan, Wang, Huixin, Yu, Zhongjie, Wang, Qinghua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c401t-60f3872764977b4a0d649691fe9938f944d50f7a9b6697c524f37159bed56d933
container_end_page
container_issue 11
container_start_page 1390
container_title Micromachines (Basel)
container_volume 15
creator Fu, Jiajun
Liu, Chao
Zhao, Runhan
Wang, Huixin
Yu, Zhongjie
Wang, Qinghua
description The efficient cutting of non-woven fabric shows great significance to the development of the textile industry. In recent years, laser cutting technology has been widely applied in the clothing industry due to its high efficiency and cutting quality. In this work, a UV nanosecond pulsed laser with a wavelength of 355 nm and a max power of 6.5 W is used to cut non-woven fabric with a thickness of 0.15 mm. The variation of kerf width, surface morphology, and chemical contents are investigated under different laser processing parameters, and the optimal processing parameter is determined. The experimental results demonstrate that the degree of crystallization and chemical composition of the kerf on the non-woven fabric surface is significantly influenced by laser cutting parameters such as laser scanning speed (from 100 to 700 mm/s) and frequency (from 20 to 70 kHz). The scanning speed of 500 mm/s and frequency of 30 kHz are considered the best parameters for achieving abundant energy for the complete and efficient cutting of non-woven fabric. In addition, the level of carbonization and oxidation reaches a relatively low value, and the kerf width is 0.214 mm, which is considered a reasonable value under the optimal processing parameters, showing high cutting quality. Furthermore, the effect of different cutting treatments on surface morphology and chemical contents is also studied. The experimental results present that the non-woven fabric cut by laser possesses a flat kerf, showing a similar effect to that of scissor cutting. Moreover, due to the programmability of laser processing patterns, it is possible to create more intricate designs on non-woven fabric. This facilitates the application and promotion of laser-cut non-woven fabrics. These results can provide a certain reference for laser cutting in the textile industry and are expected to allow for the cutting of high-quality kerf with low carbonization and oxidation.
doi_str_mv 10.3390/mi15111390
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0c9b23ffc885411085c89ec19b4be03a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818340608</galeid><doaj_id>oai_doaj_org_article_0c9b23ffc885411085c89ec19b4be03a</doaj_id><sourcerecordid>A818340608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-60f3872764977b4a0d649691fe9938f944d50f7a9b6697c524f37159bed56d933</originalsourceid><addsrcrecordid>eNpdUltrFDEUDqLYUvviD5ABX0SYNpncn6QuVgtL64OrvoVMLmuWmaRNZgr-e7O7tbcEkpNzvvPlnMMHwFsETzCW8HQMiCKEqvkCHHaQdy1j7PfLR_YBOC5lA-viXNbjNTjAkkrewe4QfF7q4nKzmKcpxHWTfHOZYvsr3brYnOs-B9Osyjay-tlc6piKMyna5vs8FGebXfIb8Mrr-jy-u4_A6vzLj8W3dnn19WJxtmwNgWhqGfRY8I4zIjnviYa2Wkwi76TEwktCLIWea9kzJrmhHfGYIyp7ZymzEuMjcLHntUlv1HUOo85_VdJB7Rwpr5XOUzCDU9DIvsPeGyEoQQgKaoR0Bsme9A5iXbk-7bmu53501rg4ZT08IX0aieGPWqdbhWpFTCBWGT7cMeR0M7syqTEU44ZBR5fmojDCmFBBpKjQ98-gmzTnWGe1QyHGKZEVdbJHrXXtIESf6sembuvGUIfufKj-M4EEJpDBLe3HfYLJqZTs_H35CKqtNtSDNir43eOG76H_lYD_ATmTsHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133167549</pqid></control><display><type>article</type><title>Laser Cutting of Non-Woven Fabric Using UV Nanosecond Pulsed Laser</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fu, Jiajun ; Liu, Chao ; Zhao, Runhan ; Wang, Huixin ; Yu, Zhongjie ; Wang, Qinghua</creator><creatorcontrib>Fu, Jiajun ; Liu, Chao ; Zhao, Runhan ; Wang, Huixin ; Yu, Zhongjie ; Wang, Qinghua</creatorcontrib><description>The efficient cutting of non-woven fabric shows great significance to the development of the textile industry. In recent years, laser cutting technology has been widely applied in the clothing industry due to its high efficiency and cutting quality. In this work, a UV nanosecond pulsed laser with a wavelength of 355 nm and a max power of 6.5 W is used to cut non-woven fabric with a thickness of 0.15 mm. The variation of kerf width, surface morphology, and chemical contents are investigated under different laser processing parameters, and the optimal processing parameter is determined. The experimental results demonstrate that the degree of crystallization and chemical composition of the kerf on the non-woven fabric surface is significantly influenced by laser cutting parameters such as laser scanning speed (from 100 to 700 mm/s) and frequency (from 20 to 70 kHz). The scanning speed of 500 mm/s and frequency of 30 kHz are considered the best parameters for achieving abundant energy for the complete and efficient cutting of non-woven fabric. In addition, the level of carbonization and oxidation reaches a relatively low value, and the kerf width is 0.214 mm, which is considered a reasonable value under the optimal processing parameters, showing high cutting quality. Furthermore, the effect of different cutting treatments on surface morphology and chemical contents is also studied. The experimental results present that the non-woven fabric cut by laser possesses a flat kerf, showing a similar effect to that of scissor cutting. Moreover, due to the programmability of laser processing patterns, it is possible to create more intricate designs on non-woven fabric. This facilitates the application and promotion of laser-cut non-woven fabrics. These results can provide a certain reference for laser cutting in the textile industry and are expected to allow for the cutting of high-quality kerf with low carbonization and oxidation.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi15111390</identifier><identifier>PMID: 39597202</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Ablation ; Carbon fibers ; Carbonization ; Chemical composition ; Chemical elements ; Clothing industry ; Cotton ; Crystallization ; Cutting parameters ; Energy ; Industrial development ; Kerf ; Laser applications ; Laser beam cutting ; Laser processing ; Lasers ; Morphology ; nanosecond laser cutting ; Nanosecond pulses ; non-woven fabric ; Nonwoven fabrics ; Oxidation ; Polyesters ; Process parameters ; Pulsed lasers ; Scanning electron microscopy ; Spectrum analysis ; surface morphology and chemistry ; Technology application ; Thickness</subject><ispartof>Micromachines (Basel), 2024-11, Vol.15 (11), p.1390</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c401t-60f3872764977b4a0d649691fe9938f944d50f7a9b6697c524f37159bed56d933</cites><orcidid>0000-0002-8210-8220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3133167549/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3133167549?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39597202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Jiajun</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Zhao, Runhan</creatorcontrib><creatorcontrib>Wang, Huixin</creatorcontrib><creatorcontrib>Yu, Zhongjie</creatorcontrib><creatorcontrib>Wang, Qinghua</creatorcontrib><title>Laser Cutting of Non-Woven Fabric Using UV Nanosecond Pulsed Laser</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>The efficient cutting of non-woven fabric shows great significance to the development of the textile industry. In recent years, laser cutting technology has been widely applied in the clothing industry due to its high efficiency and cutting quality. In this work, a UV nanosecond pulsed laser with a wavelength of 355 nm and a max power of 6.5 W is used to cut non-woven fabric with a thickness of 0.15 mm. The variation of kerf width, surface morphology, and chemical contents are investigated under different laser processing parameters, and the optimal processing parameter is determined. The experimental results demonstrate that the degree of crystallization and chemical composition of the kerf on the non-woven fabric surface is significantly influenced by laser cutting parameters such as laser scanning speed (from 100 to 700 mm/s) and frequency (from 20 to 70 kHz). The scanning speed of 500 mm/s and frequency of 30 kHz are considered the best parameters for achieving abundant energy for the complete and efficient cutting of non-woven fabric. In addition, the level of carbonization and oxidation reaches a relatively low value, and the kerf width is 0.214 mm, which is considered a reasonable value under the optimal processing parameters, showing high cutting quality. Furthermore, the effect of different cutting treatments on surface morphology and chemical contents is also studied. The experimental results present that the non-woven fabric cut by laser possesses a flat kerf, showing a similar effect to that of scissor cutting. Moreover, due to the programmability of laser processing patterns, it is possible to create more intricate designs on non-woven fabric. This facilitates the application and promotion of laser-cut non-woven fabrics. These results can provide a certain reference for laser cutting in the textile industry and are expected to allow for the cutting of high-quality kerf with low carbonization and oxidation.</description><subject>Ablation</subject><subject>Carbon fibers</subject><subject>Carbonization</subject><subject>Chemical composition</subject><subject>Chemical elements</subject><subject>Clothing industry</subject><subject>Cotton</subject><subject>Crystallization</subject><subject>Cutting parameters</subject><subject>Energy</subject><subject>Industrial development</subject><subject>Kerf</subject><subject>Laser applications</subject><subject>Laser beam cutting</subject><subject>Laser processing</subject><subject>Lasers</subject><subject>Morphology</subject><subject>nanosecond laser cutting</subject><subject>Nanosecond pulses</subject><subject>non-woven fabric</subject><subject>Nonwoven fabrics</subject><subject>Oxidation</subject><subject>Polyesters</subject><subject>Process parameters</subject><subject>Pulsed lasers</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>surface morphology and chemistry</subject><subject>Technology application</subject><subject>Thickness</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUltrFDEUDqLYUvviD5ABX0SYNpncn6QuVgtL64OrvoVMLmuWmaRNZgr-e7O7tbcEkpNzvvPlnMMHwFsETzCW8HQMiCKEqvkCHHaQdy1j7PfLR_YBOC5lA-viXNbjNTjAkkrewe4QfF7q4nKzmKcpxHWTfHOZYvsr3brYnOs-B9Osyjay-tlc6piKMyna5vs8FGebXfIb8Mrr-jy-u4_A6vzLj8W3dnn19WJxtmwNgWhqGfRY8I4zIjnviYa2Wkwi76TEwktCLIWea9kzJrmhHfGYIyp7ZymzEuMjcLHntUlv1HUOo85_VdJB7Rwpr5XOUzCDU9DIvsPeGyEoQQgKaoR0Bsme9A5iXbk-7bmu53501rg4ZT08IX0aieGPWqdbhWpFTCBWGT7cMeR0M7syqTEU44ZBR5fmojDCmFBBpKjQ98-gmzTnWGe1QyHGKZEVdbJHrXXtIESf6sembuvGUIfufKj-M4EEJpDBLe3HfYLJqZTs_H35CKqtNtSDNir43eOG76H_lYD_ATmTsHg</recordid><startdate>20241117</startdate><enddate>20241117</enddate><creator>Fu, Jiajun</creator><creator>Liu, Chao</creator><creator>Zhao, Runhan</creator><creator>Wang, Huixin</creator><creator>Yu, Zhongjie</creator><creator>Wang, Qinghua</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8210-8220</orcidid></search><sort><creationdate>20241117</creationdate><title>Laser Cutting of Non-Woven Fabric Using UV Nanosecond Pulsed Laser</title><author>Fu, Jiajun ; Liu, Chao ; Zhao, Runhan ; Wang, Huixin ; Yu, Zhongjie ; Wang, Qinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-60f3872764977b4a0d649691fe9938f944d50f7a9b6697c524f37159bed56d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Carbon fibers</topic><topic>Carbonization</topic><topic>Chemical composition</topic><topic>Chemical elements</topic><topic>Clothing industry</topic><topic>Cotton</topic><topic>Crystallization</topic><topic>Cutting parameters</topic><topic>Energy</topic><topic>Industrial development</topic><topic>Kerf</topic><topic>Laser applications</topic><topic>Laser beam cutting</topic><topic>Laser processing</topic><topic>Lasers</topic><topic>Morphology</topic><topic>nanosecond laser cutting</topic><topic>Nanosecond pulses</topic><topic>non-woven fabric</topic><topic>Nonwoven fabrics</topic><topic>Oxidation</topic><topic>Polyesters</topic><topic>Process parameters</topic><topic>Pulsed lasers</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>surface morphology and chemistry</topic><topic>Technology application</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Jiajun</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Zhao, Runhan</creatorcontrib><creatorcontrib>Wang, Huixin</creatorcontrib><creatorcontrib>Yu, Zhongjie</creatorcontrib><creatorcontrib>Wang, Qinghua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Jiajun</au><au>Liu, Chao</au><au>Zhao, Runhan</au><au>Wang, Huixin</au><au>Yu, Zhongjie</au><au>Wang, Qinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Cutting of Non-Woven Fabric Using UV Nanosecond Pulsed Laser</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2024-11-17</date><risdate>2024</risdate><volume>15</volume><issue>11</issue><spage>1390</spage><pages>1390-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>The efficient cutting of non-woven fabric shows great significance to the development of the textile industry. In recent years, laser cutting technology has been widely applied in the clothing industry due to its high efficiency and cutting quality. In this work, a UV nanosecond pulsed laser with a wavelength of 355 nm and a max power of 6.5 W is used to cut non-woven fabric with a thickness of 0.15 mm. The variation of kerf width, surface morphology, and chemical contents are investigated under different laser processing parameters, and the optimal processing parameter is determined. The experimental results demonstrate that the degree of crystallization and chemical composition of the kerf on the non-woven fabric surface is significantly influenced by laser cutting parameters such as laser scanning speed (from 100 to 700 mm/s) and frequency (from 20 to 70 kHz). The scanning speed of 500 mm/s and frequency of 30 kHz are considered the best parameters for achieving abundant energy for the complete and efficient cutting of non-woven fabric. In addition, the level of carbonization and oxidation reaches a relatively low value, and the kerf width is 0.214 mm, which is considered a reasonable value under the optimal processing parameters, showing high cutting quality. Furthermore, the effect of different cutting treatments on surface morphology and chemical contents is also studied. The experimental results present that the non-woven fabric cut by laser possesses a flat kerf, showing a similar effect to that of scissor cutting. Moreover, due to the programmability of laser processing patterns, it is possible to create more intricate designs on non-woven fabric. This facilitates the application and promotion of laser-cut non-woven fabrics. These results can provide a certain reference for laser cutting in the textile industry and are expected to allow for the cutting of high-quality kerf with low carbonization and oxidation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39597202</pmid><doi>10.3390/mi15111390</doi><orcidid>https://orcid.org/0000-0002-8210-8220</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2024-11, Vol.15 (11), p.1390
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0c9b23ffc885411085c89ec19b4be03a
source Publicly Available Content Database; PubMed Central
subjects Ablation
Carbon fibers
Carbonization
Chemical composition
Chemical elements
Clothing industry
Cotton
Crystallization
Cutting parameters
Energy
Industrial development
Kerf
Laser applications
Laser beam cutting
Laser processing
Lasers
Morphology
nanosecond laser cutting
Nanosecond pulses
non-woven fabric
Nonwoven fabrics
Oxidation
Polyesters
Process parameters
Pulsed lasers
Scanning electron microscopy
Spectrum analysis
surface morphology and chemistry
Technology application
Thickness
title Laser Cutting of Non-Woven Fabric Using UV Nanosecond Pulsed Laser
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Cutting%20of%20Non-Woven%20Fabric%20Using%20UV%20Nanosecond%20Pulsed%20Laser&rft.jtitle=Micromachines%20(Basel)&rft.au=Fu,%20Jiajun&rft.date=2024-11-17&rft.volume=15&rft.issue=11&rft.spage=1390&rft.pages=1390-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi15111390&rft_dat=%3Cgale_doaj_%3EA818340608%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-60f3872764977b4a0d649691fe9938f944d50f7a9b6697c524f37159bed56d933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133167549&rft_id=info:pmid/39597202&rft_galeid=A818340608&rfr_iscdi=true