Loading…

Arsenate Removal from Aqueous Media Using Chitosan-Magnetite Hydrogel by Batch and Fixed-Bed Columns

The removal of arsenate ions from aqueous solutions at near-neutral pH was carried out using chitosan-magnetite (ChM) hydrogel beads in batch systems. Equilibrium isotherms and kinetic studies are reported. Obtained equilibrium and kinetic data were fitted to mathematical models, estimating model pa...

Full description

Saved in:
Bibliographic Details
Published in:Gels 2022-03, Vol.8 (3), p.186
Main Authors: Verduzco-Navarro, Ilse Paulina, Mendizábal, Eduardo, Rivera Mayorga, José Antonio, Rentería-Urquiza, Maite, Gonzalez-Alvarez, Alejandro, Rios-Donato, Nely
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The removal of arsenate ions from aqueous solutions at near-neutral pH was carried out using chitosan-magnetite (ChM) hydrogel beads in batch systems. Equilibrium isotherms and kinetic studies are reported. Obtained equilibrium and kinetic data were fitted to mathematical models, estimating model parameters by non-linear regression analysis. Langmuir model was found to best fit equilibrium data; a maximum adsorption capacity of 66.9 mg As/g was estimated at pH 7.0. Pseudo-first order kinetic model was observed to best fit kinetic data. The pH of the solution was observed to increase with increasing contact time, which is attributed to protonation of amine groups present in the hydrogel. Protonation of functional groups in the ChM sorbent yields a higher number of active sites for arsenate removal, being as this a process that can't be overlooked in future applications of ChM hydrogel for the removal or arsenate ions. Chitosan-magnetite and ChM-arsenate interactions were determined by XPS. Arsenate removal using fixed-bed column packed with ChM was carried out, reporting a non-ideal behavior attributed to pH increase of the effluent caused by proton transfer to ChM hydrogels.
ISSN:2310-2861
2310-2861
DOI:10.3390/gels8030186