Loading…
Airspace Contamination by Volcanic Ash from Sequences of Etna Paroxysms: Coupling the WRF-Chem Dispersion Model with Near-Source L-Band Radar Observations
Volcanic emissions (ash, gas, aerosols) dispersed in the atmosphere during explosive eruptions generate hazards affecting aviation, human health, air quality, and the environment. We document for the first time the contamination of airspace by very fine volcanic ash due to sequences of transient ash...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-08, Vol.15 (15), p.3760 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-d1aa59f6f5f831fd3abc6534302a6fef1195605609a64ba4847eba0871a607e93 |
container_end_page | |
container_issue | 15 |
container_start_page | 3760 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 15 |
creator | Rizza, Umberto Donnadieu, Franck Morichetti, Mauro Avolio, Elenio Castorina, Giuseppe Semprebello, Agostino Magazu, Salvatore Passerini, Giorgio Mancinelli, Enrico Biensan, Clothilde |
description | Volcanic emissions (ash, gas, aerosols) dispersed in the atmosphere during explosive eruptions generate hazards affecting aviation, human health, air quality, and the environment. We document for the first time the contamination of airspace by very fine volcanic ash due to sequences of transient ash plumes from Mount Etna. The atmospheric dispersal of sub-10 μm (PM10) ash is modelled using the WRF-Chem model, coupled online with meteorology and aerosols and offline with mass eruption rates (MERs) derived from near-vent Doppler radar measurements and inferred plume altitudes. We analyze two sequences of paroxysms with widely varied volcanological conditions and contrasted meteorological synoptic patterns in October–December 2013 and on 3–5 December 2015. We analyze the PM10 ash dispersal simulation maps in terms of time-averaged columnar ash density, concentration at specified flight levels averaged over the entire sequence interval, and daily average concentration during selected paroxysm days at these flight levels. The very fine ash from such eruption sequences is shown to easily contaminate the airspace around the volcano within a radius of about 1000 km in a matter of a few days. Synoptic patterns with relatively weak tropospheric currents lead to the accumulation of PM10 ash at a regional scale all around Etna. In this context, closely interspersed paroxysms tend to accumulate very fine ash more diffusively at a lower troposphere and in stretched ash clouds higher up in the troposphere. Low-pressure, high-winds weather systems tend to stretch ash clouds into ~100 km wide clouds, forming large-scale vortices 800–1600 km in diameter. Daily average PM10 ash concentrations commonly exceed the aviation hazard threshold, up to 1000 km downwind from the volcano and up to the upper troposphere for intense paroxysms. Vertical distributions show ash cloud thicknesses in the range 0.7–3 km, and PM10 sometimes stagnates at ground level, which represent a potential health hazard. |
doi_str_mv | 10.3390/rs15153760 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0cae12ef1c4a42d6bac0b41519528e7b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760616553</galeid><doaj_id>oai_doaj_org_article_0cae12ef1c4a42d6bac0b41519528e7b</doaj_id><sourcerecordid>A760616553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d1aa59f6f5f831fd3abc6534302a6fef1195605609a64ba4847eba0871a607e93</originalsourceid><addsrcrecordid>eNpVUttu1DAUjBBIVG1f-AJLPIGU4lucmLewtLTSQlHL5TE6ceyNV4md2tnS_RW-Fm-DuNiWbI1mxsfjk2UvCD5jTOI3IZKCFKwU-El2RHFJc04lffrP-Xl2GuMWp8EYkZgfZT9rG-IESqOVdzOM1sFsvUPtHn3zgwJnFapjj0zwI7rVdzvtlI7IG3Q-O0CfIfiHfRzj26TfTYN1GzT3Gn2_uchXvR7RexsnHeLB8qPv9IB-2LlHnzSE_NbvQrp3nb8D16Eb6CCg6zbqcP9YQjzJnhkYoj79vR9nXy_Ov6wu8_X1h6tVvc4Vk2zOOwJQSCNMYSpGTMegVaJgnGEKwmhDiCwETkuC4C3wipe6BVyVBAQutWTH2dXi23nYNlOwI4R948E2j4APmwbCbNWgG6xAE5o8FQdOO9GCwi1PqcuCVrpsk9erxauH4T-ry3rdHDDMKZYC43uSuC8X7hR8yjXOzTYl4tJTG1pxSXBFK5xYZwtrA6kA64yfA6g0Oz1a5Z02NuF1-nRBRFGwJHi9CFTwMQZt_tRBcHPok-Zvn7BfG8Suqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849108280</pqid></control><display><type>article</type><title>Airspace Contamination by Volcanic Ash from Sequences of Etna Paroxysms: Coupling the WRF-Chem Dispersion Model with Near-Source L-Band Radar Observations</title><source>Publicly Available Content (ProQuest)</source><creator>Rizza, Umberto ; Donnadieu, Franck ; Morichetti, Mauro ; Avolio, Elenio ; Castorina, Giuseppe ; Semprebello, Agostino ; Magazu, Salvatore ; Passerini, Giorgio ; Mancinelli, Enrico ; Biensan, Clothilde</creator><creatorcontrib>Rizza, Umberto ; Donnadieu, Franck ; Morichetti, Mauro ; Avolio, Elenio ; Castorina, Giuseppe ; Semprebello, Agostino ; Magazu, Salvatore ; Passerini, Giorgio ; Mancinelli, Enrico ; Biensan, Clothilde</creatorcontrib><description>Volcanic emissions (ash, gas, aerosols) dispersed in the atmosphere during explosive eruptions generate hazards affecting aviation, human health, air quality, and the environment. We document for the first time the contamination of airspace by very fine volcanic ash due to sequences of transient ash plumes from Mount Etna. The atmospheric dispersal of sub-10 μm (PM10) ash is modelled using the WRF-Chem model, coupled online with meteorology and aerosols and offline with mass eruption rates (MERs) derived from near-vent Doppler radar measurements and inferred plume altitudes. We analyze two sequences of paroxysms with widely varied volcanological conditions and contrasted meteorological synoptic patterns in October–December 2013 and on 3–5 December 2015. We analyze the PM10 ash dispersal simulation maps in terms of time-averaged columnar ash density, concentration at specified flight levels averaged over the entire sequence interval, and daily average concentration during selected paroxysm days at these flight levels. The very fine ash from such eruption sequences is shown to easily contaminate the airspace around the volcano within a radius of about 1000 km in a matter of a few days. Synoptic patterns with relatively weak tropospheric currents lead to the accumulation of PM10 ash at a regional scale all around Etna. In this context, closely interspersed paroxysms tend to accumulate very fine ash more diffusively at a lower troposphere and in stretched ash clouds higher up in the troposphere. Low-pressure, high-winds weather systems tend to stretch ash clouds into ~100 km wide clouds, forming large-scale vortices 800–1600 km in diameter. Daily average PM10 ash concentrations commonly exceed the aviation hazard threshold, up to 1000 km downwind from the volcano and up to the upper troposphere for intense paroxysms. Vertical distributions show ash cloud thicknesses in the range 0.7–3 km, and PM10 sometimes stagnates at ground level, which represent a potential health hazard.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15153760</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerosols ; Air quality ; Aircraft ; Airports ; Airspace ; Analysis ; Aviation ; aviation hazards ; Clouds ; Communication ; Contamination ; Diameters ; Dispersion ; Doppler radar ; Earth Sciences ; Emissions ; Eruptions ; Flight ; France ; Ground stations ; Health hazards ; Low pressure ; Meteorology ; Mount Etna ; Numerical weather forecasting ; Observatories ; Outdoor air quality ; Particulate matter ; Plumes ; Radar ; Radar measurement ; Radar meteorology ; Risk management ; Sciences of the Universe ; Troposphere ; Volcanic activity ; Volcanic ash ; volcanic ash cloud ; Volcanic eruptions ; Volcanoes ; Volcanology ; VOLDORAD-2B Doppler radar ; Weather ; WRF-Chem model</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-08, Vol.15 (15), p.3760</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c393t-d1aa59f6f5f831fd3abc6534302a6fef1195605609a64ba4847eba0871a607e93</cites><orcidid>0000-0002-7633-3878 ; 0000-0003-1646-3010 ; 0000-0001-8690-5254 ; 0000-0002-1524-7933 ; 0000-0002-2598-833X ; 0000-0002-9692-6208 ; 0000-0001-8293-1340 ; 0000-0003-1333-909X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2849108280/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2849108280?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,44566,74869</link.rule.ids><backlink>$$Uhttps://uca.hal.science/hal-04209600$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rizza, Umberto</creatorcontrib><creatorcontrib>Donnadieu, Franck</creatorcontrib><creatorcontrib>Morichetti, Mauro</creatorcontrib><creatorcontrib>Avolio, Elenio</creatorcontrib><creatorcontrib>Castorina, Giuseppe</creatorcontrib><creatorcontrib>Semprebello, Agostino</creatorcontrib><creatorcontrib>Magazu, Salvatore</creatorcontrib><creatorcontrib>Passerini, Giorgio</creatorcontrib><creatorcontrib>Mancinelli, Enrico</creatorcontrib><creatorcontrib>Biensan, Clothilde</creatorcontrib><title>Airspace Contamination by Volcanic Ash from Sequences of Etna Paroxysms: Coupling the WRF-Chem Dispersion Model with Near-Source L-Band Radar Observations</title><title>Remote sensing (Basel, Switzerland)</title><description>Volcanic emissions (ash, gas, aerosols) dispersed in the atmosphere during explosive eruptions generate hazards affecting aviation, human health, air quality, and the environment. We document for the first time the contamination of airspace by very fine volcanic ash due to sequences of transient ash plumes from Mount Etna. The atmospheric dispersal of sub-10 μm (PM10) ash is modelled using the WRF-Chem model, coupled online with meteorology and aerosols and offline with mass eruption rates (MERs) derived from near-vent Doppler radar measurements and inferred plume altitudes. We analyze two sequences of paroxysms with widely varied volcanological conditions and contrasted meteorological synoptic patterns in October–December 2013 and on 3–5 December 2015. We analyze the PM10 ash dispersal simulation maps in terms of time-averaged columnar ash density, concentration at specified flight levels averaged over the entire sequence interval, and daily average concentration during selected paroxysm days at these flight levels. The very fine ash from such eruption sequences is shown to easily contaminate the airspace around the volcano within a radius of about 1000 km in a matter of a few days. Synoptic patterns with relatively weak tropospheric currents lead to the accumulation of PM10 ash at a regional scale all around Etna. In this context, closely interspersed paroxysms tend to accumulate very fine ash more diffusively at a lower troposphere and in stretched ash clouds higher up in the troposphere. Low-pressure, high-winds weather systems tend to stretch ash clouds into ~100 km wide clouds, forming large-scale vortices 800–1600 km in diameter. Daily average PM10 ash concentrations commonly exceed the aviation hazard threshold, up to 1000 km downwind from the volcano and up to the upper troposphere for intense paroxysms. Vertical distributions show ash cloud thicknesses in the range 0.7–3 km, and PM10 sometimes stagnates at ground level, which represent a potential health hazard.</description><subject>Aerosols</subject><subject>Air quality</subject><subject>Aircraft</subject><subject>Airports</subject><subject>Airspace</subject><subject>Analysis</subject><subject>Aviation</subject><subject>aviation hazards</subject><subject>Clouds</subject><subject>Communication</subject><subject>Contamination</subject><subject>Diameters</subject><subject>Dispersion</subject><subject>Doppler radar</subject><subject>Earth Sciences</subject><subject>Emissions</subject><subject>Eruptions</subject><subject>Flight</subject><subject>France</subject><subject>Ground stations</subject><subject>Health hazards</subject><subject>Low pressure</subject><subject>Meteorology</subject><subject>Mount Etna</subject><subject>Numerical weather forecasting</subject><subject>Observatories</subject><subject>Outdoor air quality</subject><subject>Particulate matter</subject><subject>Plumes</subject><subject>Radar</subject><subject>Radar measurement</subject><subject>Radar meteorology</subject><subject>Risk management</subject><subject>Sciences of the Universe</subject><subject>Troposphere</subject><subject>Volcanic activity</subject><subject>Volcanic ash</subject><subject>volcanic ash cloud</subject><subject>Volcanic eruptions</subject><subject>Volcanoes</subject><subject>Volcanology</subject><subject>VOLDORAD-2B Doppler radar</subject><subject>Weather</subject><subject>WRF-Chem model</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUttu1DAUjBBIVG1f-AJLPIGU4lucmLewtLTSQlHL5TE6ceyNV4md2tnS_RW-Fm-DuNiWbI1mxsfjk2UvCD5jTOI3IZKCFKwU-El2RHFJc04lffrP-Xl2GuMWp8EYkZgfZT9rG-IESqOVdzOM1sFsvUPtHn3zgwJnFapjj0zwI7rVdzvtlI7IG3Q-O0CfIfiHfRzj26TfTYN1GzT3Gn2_uchXvR7RexsnHeLB8qPv9IB-2LlHnzSE_NbvQrp3nb8D16Eb6CCg6zbqcP9YQjzJnhkYoj79vR9nXy_Ov6wu8_X1h6tVvc4Vk2zOOwJQSCNMYSpGTMegVaJgnGEKwmhDiCwETkuC4C3wipe6BVyVBAQutWTH2dXi23nYNlOwI4R948E2j4APmwbCbNWgG6xAE5o8FQdOO9GCwi1PqcuCVrpsk9erxauH4T-ry3rdHDDMKZYC43uSuC8X7hR8yjXOzTYl4tJTG1pxSXBFK5xYZwtrA6kA64yfA6g0Oz1a5Z02NuF1-nRBRFGwJHi9CFTwMQZt_tRBcHPok-Zvn7BfG8Suqg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Rizza, Umberto</creator><creator>Donnadieu, Franck</creator><creator>Morichetti, Mauro</creator><creator>Avolio, Elenio</creator><creator>Castorina, Giuseppe</creator><creator>Semprebello, Agostino</creator><creator>Magazu, Salvatore</creator><creator>Passerini, Giorgio</creator><creator>Mancinelli, Enrico</creator><creator>Biensan, Clothilde</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7633-3878</orcidid><orcidid>https://orcid.org/0000-0003-1646-3010</orcidid><orcidid>https://orcid.org/0000-0001-8690-5254</orcidid><orcidid>https://orcid.org/0000-0002-1524-7933</orcidid><orcidid>https://orcid.org/0000-0002-2598-833X</orcidid><orcidid>https://orcid.org/0000-0002-9692-6208</orcidid><orcidid>https://orcid.org/0000-0001-8293-1340</orcidid><orcidid>https://orcid.org/0000-0003-1333-909X</orcidid></search><sort><creationdate>20230801</creationdate><title>Airspace Contamination by Volcanic Ash from Sequences of Etna Paroxysms: Coupling the WRF-Chem Dispersion Model with Near-Source L-Band Radar Observations</title><author>Rizza, Umberto ; Donnadieu, Franck ; Morichetti, Mauro ; Avolio, Elenio ; Castorina, Giuseppe ; Semprebello, Agostino ; Magazu, Salvatore ; Passerini, Giorgio ; Mancinelli, Enrico ; Biensan, Clothilde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d1aa59f6f5f831fd3abc6534302a6fef1195605609a64ba4847eba0871a607e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Air quality</topic><topic>Aircraft</topic><topic>Airports</topic><topic>Airspace</topic><topic>Analysis</topic><topic>Aviation</topic><topic>aviation hazards</topic><topic>Clouds</topic><topic>Communication</topic><topic>Contamination</topic><topic>Diameters</topic><topic>Dispersion</topic><topic>Doppler radar</topic><topic>Earth Sciences</topic><topic>Emissions</topic><topic>Eruptions</topic><topic>Flight</topic><topic>France</topic><topic>Ground stations</topic><topic>Health hazards</topic><topic>Low pressure</topic><topic>Meteorology</topic><topic>Mount Etna</topic><topic>Numerical weather forecasting</topic><topic>Observatories</topic><topic>Outdoor air quality</topic><topic>Particulate matter</topic><topic>Plumes</topic><topic>Radar</topic><topic>Radar measurement</topic><topic>Radar meteorology</topic><topic>Risk management</topic><topic>Sciences of the Universe</topic><topic>Troposphere</topic><topic>Volcanic activity</topic><topic>Volcanic ash</topic><topic>volcanic ash cloud</topic><topic>Volcanic eruptions</topic><topic>Volcanoes</topic><topic>Volcanology</topic><topic>VOLDORAD-2B Doppler radar</topic><topic>Weather</topic><topic>WRF-Chem model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizza, Umberto</creatorcontrib><creatorcontrib>Donnadieu, Franck</creatorcontrib><creatorcontrib>Morichetti, Mauro</creatorcontrib><creatorcontrib>Avolio, Elenio</creatorcontrib><creatorcontrib>Castorina, Giuseppe</creatorcontrib><creatorcontrib>Semprebello, Agostino</creatorcontrib><creatorcontrib>Magazu, Salvatore</creatorcontrib><creatorcontrib>Passerini, Giorgio</creatorcontrib><creatorcontrib>Mancinelli, Enrico</creatorcontrib><creatorcontrib>Biensan, Clothilde</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizza, Umberto</au><au>Donnadieu, Franck</au><au>Morichetti, Mauro</au><au>Avolio, Elenio</au><au>Castorina, Giuseppe</au><au>Semprebello, Agostino</au><au>Magazu, Salvatore</au><au>Passerini, Giorgio</au><au>Mancinelli, Enrico</au><au>Biensan, Clothilde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Airspace Contamination by Volcanic Ash from Sequences of Etna Paroxysms: Coupling the WRF-Chem Dispersion Model with Near-Source L-Band Radar Observations</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>15</volume><issue>15</issue><spage>3760</spage><pages>3760-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Volcanic emissions (ash, gas, aerosols) dispersed in the atmosphere during explosive eruptions generate hazards affecting aviation, human health, air quality, and the environment. We document for the first time the contamination of airspace by very fine volcanic ash due to sequences of transient ash plumes from Mount Etna. The atmospheric dispersal of sub-10 μm (PM10) ash is modelled using the WRF-Chem model, coupled online with meteorology and aerosols and offline with mass eruption rates (MERs) derived from near-vent Doppler radar measurements and inferred plume altitudes. We analyze two sequences of paroxysms with widely varied volcanological conditions and contrasted meteorological synoptic patterns in October–December 2013 and on 3–5 December 2015. We analyze the PM10 ash dispersal simulation maps in terms of time-averaged columnar ash density, concentration at specified flight levels averaged over the entire sequence interval, and daily average concentration during selected paroxysm days at these flight levels. The very fine ash from such eruption sequences is shown to easily contaminate the airspace around the volcano within a radius of about 1000 km in a matter of a few days. Synoptic patterns with relatively weak tropospheric currents lead to the accumulation of PM10 ash at a regional scale all around Etna. In this context, closely interspersed paroxysms tend to accumulate very fine ash more diffusively at a lower troposphere and in stretched ash clouds higher up in the troposphere. Low-pressure, high-winds weather systems tend to stretch ash clouds into ~100 km wide clouds, forming large-scale vortices 800–1600 km in diameter. Daily average PM10 ash concentrations commonly exceed the aviation hazard threshold, up to 1000 km downwind from the volcano and up to the upper troposphere for intense paroxysms. Vertical distributions show ash cloud thicknesses in the range 0.7–3 km, and PM10 sometimes stagnates at ground level, which represent a potential health hazard.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15153760</doi><orcidid>https://orcid.org/0000-0002-7633-3878</orcidid><orcidid>https://orcid.org/0000-0003-1646-3010</orcidid><orcidid>https://orcid.org/0000-0001-8690-5254</orcidid><orcidid>https://orcid.org/0000-0002-1524-7933</orcidid><orcidid>https://orcid.org/0000-0002-2598-833X</orcidid><orcidid>https://orcid.org/0000-0002-9692-6208</orcidid><orcidid>https://orcid.org/0000-0001-8293-1340</orcidid><orcidid>https://orcid.org/0000-0003-1333-909X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2023-08, Vol.15 (15), p.3760 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0cae12ef1c4a42d6bac0b41519528e7b |
source | Publicly Available Content (ProQuest) |
subjects | Aerosols Air quality Aircraft Airports Airspace Analysis Aviation aviation hazards Clouds Communication Contamination Diameters Dispersion Doppler radar Earth Sciences Emissions Eruptions Flight France Ground stations Health hazards Low pressure Meteorology Mount Etna Numerical weather forecasting Observatories Outdoor air quality Particulate matter Plumes Radar Radar measurement Radar meteorology Risk management Sciences of the Universe Troposphere Volcanic activity Volcanic ash volcanic ash cloud Volcanic eruptions Volcanoes Volcanology VOLDORAD-2B Doppler radar Weather WRF-Chem model |
title | Airspace Contamination by Volcanic Ash from Sequences of Etna Paroxysms: Coupling the WRF-Chem Dispersion Model with Near-Source L-Band Radar Observations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Airspace%20Contamination%20by%20Volcanic%20Ash%20from%20Sequences%20of%20Etna%20Paroxysms:%20Coupling%20the%20WRF-Chem%20Dispersion%20Model%20with%20Near-Source%20L-Band%20Radar%20Observations&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Rizza,%20Umberto&rft.date=2023-08-01&rft.volume=15&rft.issue=15&rft.spage=3760&rft.pages=3760-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15153760&rft_dat=%3Cgale_doaj_%3EA760616553%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-d1aa59f6f5f831fd3abc6534302a6fef1195605609a64ba4847eba0871a607e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2849108280&rft_id=info:pmid/&rft_galeid=A760616553&rfr_iscdi=true |