Loading…

Airspace Contamination by Volcanic Ash from Sequences of Etna Paroxysms: Coupling the WRF-Chem Dispersion Model with Near-Source L-Band Radar Observations

Volcanic emissions (ash, gas, aerosols) dispersed in the atmosphere during explosive eruptions generate hazards affecting aviation, human health, air quality, and the environment. We document for the first time the contamination of airspace by very fine volcanic ash due to sequences of transient ash...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-08, Vol.15 (15), p.3760
Main Authors: Rizza, Umberto, Donnadieu, Franck, Morichetti, Mauro, Avolio, Elenio, Castorina, Giuseppe, Semprebello, Agostino, Magazu, Salvatore, Passerini, Giorgio, Mancinelli, Enrico, Biensan, Clothilde
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c393t-d1aa59f6f5f831fd3abc6534302a6fef1195605609a64ba4847eba0871a607e93
container_end_page
container_issue 15
container_start_page 3760
container_title Remote sensing (Basel, Switzerland)
container_volume 15
creator Rizza, Umberto
Donnadieu, Franck
Morichetti, Mauro
Avolio, Elenio
Castorina, Giuseppe
Semprebello, Agostino
Magazu, Salvatore
Passerini, Giorgio
Mancinelli, Enrico
Biensan, Clothilde
description Volcanic emissions (ash, gas, aerosols) dispersed in the atmosphere during explosive eruptions generate hazards affecting aviation, human health, air quality, and the environment. We document for the first time the contamination of airspace by very fine volcanic ash due to sequences of transient ash plumes from Mount Etna. The atmospheric dispersal of sub-10 μm (PM10) ash is modelled using the WRF-Chem model, coupled online with meteorology and aerosols and offline with mass eruption rates (MERs) derived from near-vent Doppler radar measurements and inferred plume altitudes. We analyze two sequences of paroxysms with widely varied volcanological conditions and contrasted meteorological synoptic patterns in October–December 2013 and on 3–5 December 2015. We analyze the PM10 ash dispersal simulation maps in terms of time-averaged columnar ash density, concentration at specified flight levels averaged over the entire sequence interval, and daily average concentration during selected paroxysm days at these flight levels. The very fine ash from such eruption sequences is shown to easily contaminate the airspace around the volcano within a radius of about 1000 km in a matter of a few days. Synoptic patterns with relatively weak tropospheric currents lead to the accumulation of PM10 ash at a regional scale all around Etna. In this context, closely interspersed paroxysms tend to accumulate very fine ash more diffusively at a lower troposphere and in stretched ash clouds higher up in the troposphere. Low-pressure, high-winds weather systems tend to stretch ash clouds into ~100 km wide clouds, forming large-scale vortices 800–1600 km in diameter. Daily average PM10 ash concentrations commonly exceed the aviation hazard threshold, up to 1000 km downwind from the volcano and up to the upper troposphere for intense paroxysms. Vertical distributions show ash cloud thicknesses in the range 0.7–3 km, and PM10 sometimes stagnates at ground level, which represent a potential health hazard.
doi_str_mv 10.3390/rs15153760
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0cae12ef1c4a42d6bac0b41519528e7b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760616553</galeid><doaj_id>oai_doaj_org_article_0cae12ef1c4a42d6bac0b41519528e7b</doaj_id><sourcerecordid>A760616553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d1aa59f6f5f831fd3abc6534302a6fef1195605609a64ba4847eba0871a607e93</originalsourceid><addsrcrecordid>eNpVUttu1DAUjBBIVG1f-AJLPIGU4lucmLewtLTSQlHL5TE6ceyNV4md2tnS_RW-Fm-DuNiWbI1mxsfjk2UvCD5jTOI3IZKCFKwU-El2RHFJc04lffrP-Xl2GuMWp8EYkZgfZT9rG-IESqOVdzOM1sFsvUPtHn3zgwJnFapjj0zwI7rVdzvtlI7IG3Q-O0CfIfiHfRzj26TfTYN1GzT3Gn2_uchXvR7RexsnHeLB8qPv9IB-2LlHnzSE_NbvQrp3nb8D16Eb6CCg6zbqcP9YQjzJnhkYoj79vR9nXy_Ov6wu8_X1h6tVvc4Vk2zOOwJQSCNMYSpGTMegVaJgnGEKwmhDiCwETkuC4C3wipe6BVyVBAQutWTH2dXi23nYNlOwI4R948E2j4APmwbCbNWgG6xAE5o8FQdOO9GCwi1PqcuCVrpsk9erxauH4T-ry3rdHDDMKZYC43uSuC8X7hR8yjXOzTYl4tJTG1pxSXBFK5xYZwtrA6kA64yfA6g0Oz1a5Z02NuF1-nRBRFGwJHi9CFTwMQZt_tRBcHPok-Zvn7BfG8Suqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849108280</pqid></control><display><type>article</type><title>Airspace Contamination by Volcanic Ash from Sequences of Etna Paroxysms: Coupling the WRF-Chem Dispersion Model with Near-Source L-Band Radar Observations</title><source>Publicly Available Content (ProQuest)</source><creator>Rizza, Umberto ; Donnadieu, Franck ; Morichetti, Mauro ; Avolio, Elenio ; Castorina, Giuseppe ; Semprebello, Agostino ; Magazu, Salvatore ; Passerini, Giorgio ; Mancinelli, Enrico ; Biensan, Clothilde</creator><creatorcontrib>Rizza, Umberto ; Donnadieu, Franck ; Morichetti, Mauro ; Avolio, Elenio ; Castorina, Giuseppe ; Semprebello, Agostino ; Magazu, Salvatore ; Passerini, Giorgio ; Mancinelli, Enrico ; Biensan, Clothilde</creatorcontrib><description>Volcanic emissions (ash, gas, aerosols) dispersed in the atmosphere during explosive eruptions generate hazards affecting aviation, human health, air quality, and the environment. We document for the first time the contamination of airspace by very fine volcanic ash due to sequences of transient ash plumes from Mount Etna. The atmospheric dispersal of sub-10 μm (PM10) ash is modelled using the WRF-Chem model, coupled online with meteorology and aerosols and offline with mass eruption rates (MERs) derived from near-vent Doppler radar measurements and inferred plume altitudes. We analyze two sequences of paroxysms with widely varied volcanological conditions and contrasted meteorological synoptic patterns in October–December 2013 and on 3–5 December 2015. We analyze the PM10 ash dispersal simulation maps in terms of time-averaged columnar ash density, concentration at specified flight levels averaged over the entire sequence interval, and daily average concentration during selected paroxysm days at these flight levels. The very fine ash from such eruption sequences is shown to easily contaminate the airspace around the volcano within a radius of about 1000 km in a matter of a few days. Synoptic patterns with relatively weak tropospheric currents lead to the accumulation of PM10 ash at a regional scale all around Etna. In this context, closely interspersed paroxysms tend to accumulate very fine ash more diffusively at a lower troposphere and in stretched ash clouds higher up in the troposphere. Low-pressure, high-winds weather systems tend to stretch ash clouds into ~100 km wide clouds, forming large-scale vortices 800–1600 km in diameter. Daily average PM10 ash concentrations commonly exceed the aviation hazard threshold, up to 1000 km downwind from the volcano and up to the upper troposphere for intense paroxysms. Vertical distributions show ash cloud thicknesses in the range 0.7–3 km, and PM10 sometimes stagnates at ground level, which represent a potential health hazard.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15153760</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerosols ; Air quality ; Aircraft ; Airports ; Airspace ; Analysis ; Aviation ; aviation hazards ; Clouds ; Communication ; Contamination ; Diameters ; Dispersion ; Doppler radar ; Earth Sciences ; Emissions ; Eruptions ; Flight ; France ; Ground stations ; Health hazards ; Low pressure ; Meteorology ; Mount Etna ; Numerical weather forecasting ; Observatories ; Outdoor air quality ; Particulate matter ; Plumes ; Radar ; Radar measurement ; Radar meteorology ; Risk management ; Sciences of the Universe ; Troposphere ; Volcanic activity ; Volcanic ash ; volcanic ash cloud ; Volcanic eruptions ; Volcanoes ; Volcanology ; VOLDORAD-2B Doppler radar ; Weather ; WRF-Chem model</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-08, Vol.15 (15), p.3760</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c393t-d1aa59f6f5f831fd3abc6534302a6fef1195605609a64ba4847eba0871a607e93</cites><orcidid>0000-0002-7633-3878 ; 0000-0003-1646-3010 ; 0000-0001-8690-5254 ; 0000-0002-1524-7933 ; 0000-0002-2598-833X ; 0000-0002-9692-6208 ; 0000-0001-8293-1340 ; 0000-0003-1333-909X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2849108280/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2849108280?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,44566,74869</link.rule.ids><backlink>$$Uhttps://uca.hal.science/hal-04209600$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rizza, Umberto</creatorcontrib><creatorcontrib>Donnadieu, Franck</creatorcontrib><creatorcontrib>Morichetti, Mauro</creatorcontrib><creatorcontrib>Avolio, Elenio</creatorcontrib><creatorcontrib>Castorina, Giuseppe</creatorcontrib><creatorcontrib>Semprebello, Agostino</creatorcontrib><creatorcontrib>Magazu, Salvatore</creatorcontrib><creatorcontrib>Passerini, Giorgio</creatorcontrib><creatorcontrib>Mancinelli, Enrico</creatorcontrib><creatorcontrib>Biensan, Clothilde</creatorcontrib><title>Airspace Contamination by Volcanic Ash from Sequences of Etna Paroxysms: Coupling the WRF-Chem Dispersion Model with Near-Source L-Band Radar Observations</title><title>Remote sensing (Basel, Switzerland)</title><description>Volcanic emissions (ash, gas, aerosols) dispersed in the atmosphere during explosive eruptions generate hazards affecting aviation, human health, air quality, and the environment. We document for the first time the contamination of airspace by very fine volcanic ash due to sequences of transient ash plumes from Mount Etna. The atmospheric dispersal of sub-10 μm (PM10) ash is modelled using the WRF-Chem model, coupled online with meteorology and aerosols and offline with mass eruption rates (MERs) derived from near-vent Doppler radar measurements and inferred plume altitudes. We analyze two sequences of paroxysms with widely varied volcanological conditions and contrasted meteorological synoptic patterns in October–December 2013 and on 3–5 December 2015. We analyze the PM10 ash dispersal simulation maps in terms of time-averaged columnar ash density, concentration at specified flight levels averaged over the entire sequence interval, and daily average concentration during selected paroxysm days at these flight levels. The very fine ash from such eruption sequences is shown to easily contaminate the airspace around the volcano within a radius of about 1000 km in a matter of a few days. Synoptic patterns with relatively weak tropospheric currents lead to the accumulation of PM10 ash at a regional scale all around Etna. In this context, closely interspersed paroxysms tend to accumulate very fine ash more diffusively at a lower troposphere and in stretched ash clouds higher up in the troposphere. Low-pressure, high-winds weather systems tend to stretch ash clouds into ~100 km wide clouds, forming large-scale vortices 800–1600 km in diameter. Daily average PM10 ash concentrations commonly exceed the aviation hazard threshold, up to 1000 km downwind from the volcano and up to the upper troposphere for intense paroxysms. Vertical distributions show ash cloud thicknesses in the range 0.7–3 km, and PM10 sometimes stagnates at ground level, which represent a potential health hazard.</description><subject>Aerosols</subject><subject>Air quality</subject><subject>Aircraft</subject><subject>Airports</subject><subject>Airspace</subject><subject>Analysis</subject><subject>Aviation</subject><subject>aviation hazards</subject><subject>Clouds</subject><subject>Communication</subject><subject>Contamination</subject><subject>Diameters</subject><subject>Dispersion</subject><subject>Doppler radar</subject><subject>Earth Sciences</subject><subject>Emissions</subject><subject>Eruptions</subject><subject>Flight</subject><subject>France</subject><subject>Ground stations</subject><subject>Health hazards</subject><subject>Low pressure</subject><subject>Meteorology</subject><subject>Mount Etna</subject><subject>Numerical weather forecasting</subject><subject>Observatories</subject><subject>Outdoor air quality</subject><subject>Particulate matter</subject><subject>Plumes</subject><subject>Radar</subject><subject>Radar measurement</subject><subject>Radar meteorology</subject><subject>Risk management</subject><subject>Sciences of the Universe</subject><subject>Troposphere</subject><subject>Volcanic activity</subject><subject>Volcanic ash</subject><subject>volcanic ash cloud</subject><subject>Volcanic eruptions</subject><subject>Volcanoes</subject><subject>Volcanology</subject><subject>VOLDORAD-2B Doppler radar</subject><subject>Weather</subject><subject>WRF-Chem model</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUttu1DAUjBBIVG1f-AJLPIGU4lucmLewtLTSQlHL5TE6ceyNV4md2tnS_RW-Fm-DuNiWbI1mxsfjk2UvCD5jTOI3IZKCFKwU-El2RHFJc04lffrP-Xl2GuMWp8EYkZgfZT9rG-IESqOVdzOM1sFsvUPtHn3zgwJnFapjj0zwI7rVdzvtlI7IG3Q-O0CfIfiHfRzj26TfTYN1GzT3Gn2_uchXvR7RexsnHeLB8qPv9IB-2LlHnzSE_NbvQrp3nb8D16Eb6CCg6zbqcP9YQjzJnhkYoj79vR9nXy_Ov6wu8_X1h6tVvc4Vk2zOOwJQSCNMYSpGTMegVaJgnGEKwmhDiCwETkuC4C3wipe6BVyVBAQutWTH2dXi23nYNlOwI4R948E2j4APmwbCbNWgG6xAE5o8FQdOO9GCwi1PqcuCVrpsk9erxauH4T-ry3rdHDDMKZYC43uSuC8X7hR8yjXOzTYl4tJTG1pxSXBFK5xYZwtrA6kA64yfA6g0Oz1a5Z02NuF1-nRBRFGwJHi9CFTwMQZt_tRBcHPok-Zvn7BfG8Suqg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Rizza, Umberto</creator><creator>Donnadieu, Franck</creator><creator>Morichetti, Mauro</creator><creator>Avolio, Elenio</creator><creator>Castorina, Giuseppe</creator><creator>Semprebello, Agostino</creator><creator>Magazu, Salvatore</creator><creator>Passerini, Giorgio</creator><creator>Mancinelli, Enrico</creator><creator>Biensan, Clothilde</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7633-3878</orcidid><orcidid>https://orcid.org/0000-0003-1646-3010</orcidid><orcidid>https://orcid.org/0000-0001-8690-5254</orcidid><orcidid>https://orcid.org/0000-0002-1524-7933</orcidid><orcidid>https://orcid.org/0000-0002-2598-833X</orcidid><orcidid>https://orcid.org/0000-0002-9692-6208</orcidid><orcidid>https://orcid.org/0000-0001-8293-1340</orcidid><orcidid>https://orcid.org/0000-0003-1333-909X</orcidid></search><sort><creationdate>20230801</creationdate><title>Airspace Contamination by Volcanic Ash from Sequences of Etna Paroxysms: Coupling the WRF-Chem Dispersion Model with Near-Source L-Band Radar Observations</title><author>Rizza, Umberto ; Donnadieu, Franck ; Morichetti, Mauro ; Avolio, Elenio ; Castorina, Giuseppe ; Semprebello, Agostino ; Magazu, Salvatore ; Passerini, Giorgio ; Mancinelli, Enrico ; Biensan, Clothilde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d1aa59f6f5f831fd3abc6534302a6fef1195605609a64ba4847eba0871a607e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Air quality</topic><topic>Aircraft</topic><topic>Airports</topic><topic>Airspace</topic><topic>Analysis</topic><topic>Aviation</topic><topic>aviation hazards</topic><topic>Clouds</topic><topic>Communication</topic><topic>Contamination</topic><topic>Diameters</topic><topic>Dispersion</topic><topic>Doppler radar</topic><topic>Earth Sciences</topic><topic>Emissions</topic><topic>Eruptions</topic><topic>Flight</topic><topic>France</topic><topic>Ground stations</topic><topic>Health hazards</topic><topic>Low pressure</topic><topic>Meteorology</topic><topic>Mount Etna</topic><topic>Numerical weather forecasting</topic><topic>Observatories</topic><topic>Outdoor air quality</topic><topic>Particulate matter</topic><topic>Plumes</topic><topic>Radar</topic><topic>Radar measurement</topic><topic>Radar meteorology</topic><topic>Risk management</topic><topic>Sciences of the Universe</topic><topic>Troposphere</topic><topic>Volcanic activity</topic><topic>Volcanic ash</topic><topic>volcanic ash cloud</topic><topic>Volcanic eruptions</topic><topic>Volcanoes</topic><topic>Volcanology</topic><topic>VOLDORAD-2B Doppler radar</topic><topic>Weather</topic><topic>WRF-Chem model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizza, Umberto</creatorcontrib><creatorcontrib>Donnadieu, Franck</creatorcontrib><creatorcontrib>Morichetti, Mauro</creatorcontrib><creatorcontrib>Avolio, Elenio</creatorcontrib><creatorcontrib>Castorina, Giuseppe</creatorcontrib><creatorcontrib>Semprebello, Agostino</creatorcontrib><creatorcontrib>Magazu, Salvatore</creatorcontrib><creatorcontrib>Passerini, Giorgio</creatorcontrib><creatorcontrib>Mancinelli, Enrico</creatorcontrib><creatorcontrib>Biensan, Clothilde</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizza, Umberto</au><au>Donnadieu, Franck</au><au>Morichetti, Mauro</au><au>Avolio, Elenio</au><au>Castorina, Giuseppe</au><au>Semprebello, Agostino</au><au>Magazu, Salvatore</au><au>Passerini, Giorgio</au><au>Mancinelli, Enrico</au><au>Biensan, Clothilde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Airspace Contamination by Volcanic Ash from Sequences of Etna Paroxysms: Coupling the WRF-Chem Dispersion Model with Near-Source L-Band Radar Observations</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>15</volume><issue>15</issue><spage>3760</spage><pages>3760-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Volcanic emissions (ash, gas, aerosols) dispersed in the atmosphere during explosive eruptions generate hazards affecting aviation, human health, air quality, and the environment. We document for the first time the contamination of airspace by very fine volcanic ash due to sequences of transient ash plumes from Mount Etna. The atmospheric dispersal of sub-10 μm (PM10) ash is modelled using the WRF-Chem model, coupled online with meteorology and aerosols and offline with mass eruption rates (MERs) derived from near-vent Doppler radar measurements and inferred plume altitudes. We analyze two sequences of paroxysms with widely varied volcanological conditions and contrasted meteorological synoptic patterns in October–December 2013 and on 3–5 December 2015. We analyze the PM10 ash dispersal simulation maps in terms of time-averaged columnar ash density, concentration at specified flight levels averaged over the entire sequence interval, and daily average concentration during selected paroxysm days at these flight levels. The very fine ash from such eruption sequences is shown to easily contaminate the airspace around the volcano within a radius of about 1000 km in a matter of a few days. Synoptic patterns with relatively weak tropospheric currents lead to the accumulation of PM10 ash at a regional scale all around Etna. In this context, closely interspersed paroxysms tend to accumulate very fine ash more diffusively at a lower troposphere and in stretched ash clouds higher up in the troposphere. Low-pressure, high-winds weather systems tend to stretch ash clouds into ~100 km wide clouds, forming large-scale vortices 800–1600 km in diameter. Daily average PM10 ash concentrations commonly exceed the aviation hazard threshold, up to 1000 km downwind from the volcano and up to the upper troposphere for intense paroxysms. Vertical distributions show ash cloud thicknesses in the range 0.7–3 km, and PM10 sometimes stagnates at ground level, which represent a potential health hazard.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15153760</doi><orcidid>https://orcid.org/0000-0002-7633-3878</orcidid><orcidid>https://orcid.org/0000-0003-1646-3010</orcidid><orcidid>https://orcid.org/0000-0001-8690-5254</orcidid><orcidid>https://orcid.org/0000-0002-1524-7933</orcidid><orcidid>https://orcid.org/0000-0002-2598-833X</orcidid><orcidid>https://orcid.org/0000-0002-9692-6208</orcidid><orcidid>https://orcid.org/0000-0001-8293-1340</orcidid><orcidid>https://orcid.org/0000-0003-1333-909X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2023-08, Vol.15 (15), p.3760
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0cae12ef1c4a42d6bac0b41519528e7b
source Publicly Available Content (ProQuest)
subjects Aerosols
Air quality
Aircraft
Airports
Airspace
Analysis
Aviation
aviation hazards
Clouds
Communication
Contamination
Diameters
Dispersion
Doppler radar
Earth Sciences
Emissions
Eruptions
Flight
France
Ground stations
Health hazards
Low pressure
Meteorology
Mount Etna
Numerical weather forecasting
Observatories
Outdoor air quality
Particulate matter
Plumes
Radar
Radar measurement
Radar meteorology
Risk management
Sciences of the Universe
Troposphere
Volcanic activity
Volcanic ash
volcanic ash cloud
Volcanic eruptions
Volcanoes
Volcanology
VOLDORAD-2B Doppler radar
Weather
WRF-Chem model
title Airspace Contamination by Volcanic Ash from Sequences of Etna Paroxysms: Coupling the WRF-Chem Dispersion Model with Near-Source L-Band Radar Observations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Airspace%20Contamination%20by%20Volcanic%20Ash%20from%20Sequences%20of%20Etna%20Paroxysms:%20Coupling%20the%20WRF-Chem%20Dispersion%20Model%20with%20Near-Source%20L-Band%20Radar%20Observations&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Rizza,%20Umberto&rft.date=2023-08-01&rft.volume=15&rft.issue=15&rft.spage=3760&rft.pages=3760-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15153760&rft_dat=%3Cgale_doaj_%3EA760616553%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-d1aa59f6f5f831fd3abc6534302a6fef1195605609a64ba4847eba0871a607e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2849108280&rft_id=info:pmid/&rft_galeid=A760616553&rfr_iscdi=true