Loading…

Geothermal power plants with improved environmental performance: assessment of the potential for an Italian site

Geothermal energy is a clean resource, which could significantly contribute to the reduction of greenhouse and other gas emissions by replacing fossil fuels for power generation. In many geothermal sites, the resource contains substantial Non-Condensable Gases (NCGs: CO2 and contaminants), whose emi...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2021-01, Vol.238, p.1010
Main Authors: Fiaschi, Daniele, Leveni, Martina, Manfrida, Giampaolo, Mendecka, Barbara, Talluri, Lorenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Geothermal energy is a clean resource, which could significantly contribute to the reduction of greenhouse and other gas emissions by replacing fossil fuels for power generation. In many geothermal sites, the resource contains substantial Non-Condensable Gases (NCGs: CO2 and contaminants), whose emissions can be limited to developing power plant schemes suitable for complete resource reinjection. Organic Rankine or other closed-loop cycles are definitely favored in this light. This work investigates a solution for complete NCG reinjection in the liquid-dominated reservoir conditions typical of the Monte Amiata area (Italy), referring to the specific site of Torre Alfina (IT) which presents a specific attractiveness because of its high pressurization. The solution considered avoids flashing the resource and thus presents an appealing environmental performance. The power plant models include energy and exergy balances, as well as exergo-environmental analysis. The overall environmental performance is evaluated by a simplified (preliminary) Life Cycle Analysis (LCA). Different solutions are compared, considering the possibility of sub- or super-critical power cycles.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202123801010