Loading…

Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum

Diatoms possess an impressive capacity for rapidly inducible thermal dissipation of excess absorbed energy (qE), provided by the xanthophyll diatoxanthin and Lhcx proteins. By knocking out the Lhcx1 and Lhcx2 genes individually in Phaeodactylum tricornutum strain 4 and complementing the knockout lin...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-09, Vol.10 (1), p.4167-12, Article 4167
Main Authors: Buck, Jochen M., Sherman, Jonathan, Bártulos, Carolina Río, Serif, Manuel, Halder, Marc, Henkel, Jan, Falciatore, Angela, Lavaud, Johann, Gorbunov, Maxim Y., Kroth, Peter G., Falkowski, Paul G., Lepetit, Bernard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diatoms possess an impressive capacity for rapidly inducible thermal dissipation of excess absorbed energy (qE), provided by the xanthophyll diatoxanthin and Lhcx proteins. By knocking out the Lhcx1 and Lhcx2 genes individually in Phaeodactylum tricornutum strain 4 and complementing the knockout lines with different Lhcx proteins, multiple mutants with varying qE capacities are obtained, ranging from zero to high values. We demonstrate that qE is entirely dependent on the concerted action of diatoxanthin and Lhcx proteins, with Lhcx1, Lhcx2 and Lhcx3 having similar functions. Moreover, we establish a clear link between Lhcx1/2/3 mediated inducible thermal energy dissipation and a reduction in the functional absorption cross-section of photosystem II. This regulation of the functional absorption cross-section can be tuned by altered Lhcx protein expression in response to environmental conditions. Our results provide a holistic understanding of the rapidly inducible thermal energy dissipation process and its mechanistic implications in diatoms. Photosynthetic organisms can dissipate excess absorbed light energy as heat to avoid photodamage. Here the authors show that induced thermal dissipation in the diatom Phaeodactylum tricornutum Pt4 is Lhcx protein-dependent and correlates with a reduced functional absorption cross-section of photosystem II.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12043-6