Loading…
Novel Role for miR-1290 in Host Species Specificity of Influenza A Virus
The role of microRNA (miRNA) in influenza A virus (IAV) host species specificity is not well understood as yet. Here, we show that a host miRNA, miR-1290, is induced through the extracellular signal-regulated kinase (ERK) pathway upon IAV infection and is associated with increased viral titers in hu...
Saved in:
Published in: | Molecular therapy. Nucleic acids 2019-09, Vol.17, p.10-23 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c549t-a1ca11a0de7702583118c54246eba4b61203f5bfd2d3c4c494402aa41e75a4c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c549t-a1ca11a0de7702583118c54246eba4b61203f5bfd2d3c4c494402aa41e75a4c3 |
container_end_page | 23 |
container_issue | |
container_start_page | 10 |
container_title | Molecular therapy. Nucleic acids |
container_volume | 17 |
creator | Huang, Sheng-Yu Huang, Chih-Heng Chen, Chi-Jene Chen, Ting-Wen Lin, Chun-Yuan Lin, Yueh-Te Kuo, Shu-Ming Huang, Chung-Guei Lee, Li-Ang Chen, Yi-Hsiang Chen, Mei-Feng Kuo, Rei-Lin Shih, Shin-Ru |
description | The role of microRNA (miRNA) in influenza A virus (IAV) host species specificity is not well understood as yet. Here, we show that a host miRNA, miR-1290, is induced through the extracellular signal-regulated kinase (ERK) pathway upon IAV infection and is associated with increased viral titers in human cells and ferret animal models. miR-1290 was observed to target and reduce expression of the host vimentin gene. Vimentin binds with the PB2 subunit of influenza A virus ribonucleoprotein (vRNP), and knockdown of vimentin expression significantly increased vRNP nuclear retention and viral polymerase activity. Interestingly, miR-1290 was not detected in either chicken cells or mouse animal models, and the 3′ UTR of the chicken vimentin gene contains no binding site for miR-1290. These findings point to a host species-specific mechanism by which IAV upregulates miR-1290 to disrupt vimentin expression and retain vRNP in the nucleus, thereby enhancing viral polymerase activity and viral replication.
[Display omitted] |
doi_str_mv | 10.1016/j.omtn.2019.04.028 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0cea5977da594ee784b75d0cfefa7e33</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2162253119301210</els_id><doaj_id>oai_doaj_org_article_0cea5977da594ee784b75d0cfefa7e33</doaj_id><sourcerecordid>2308417216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-a1ca11a0de7702583118c54246eba4b61203f5bfd2d3c4c494402aa41e75a4c3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpaUKSP9BDEfTSi119WjaUQghpdyEkkIRehSyPUi22tZXshfTXVxsnIemhOmiE5p2XmXkQ-kBJSQmtvmzKMExjyQhtSiJKwuo36JDRihVMcvr2xfsAnaS0IflUhLKKvUcHnFLFG6EO0eoy7KDH16EH7ELEg78uKGsI9iNehTThmy1YD2mJzls_3ePg8Hp0_QzjH4NP8U8f53SM3jnTJzh5jEfo9vv57dmquLj6sT47vSisFM1UGGoNpYZ0oBRhss6d1DnDRAWtEW1FGeFOtq5jHbfCikYIwowRFJQ0wvIjtF5su2A2ehv9YOK9Dsbrh48Q77SJk7c9aGLByEapLt8CQNWiVbIj1oEzCjjPXt8Wr-3cDtBZGKdo-lemrzOj_6Xvwk5XUgpeNdng86NBDL9nSJMefLLQ92aEMCfNmMgUFCV76ad_pJswxzFvSjNOakFVVmYVW1Q2hpQiuOdmKNF77DqPmLHrPXZNhM7Yc9HHl2M8lzxBzoKviwAyl52HqFNGOlrofAQ75c35__n_BT7NvDc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308417216</pqid></control><display><type>article</type><title>Novel Role for miR-1290 in Host Species Specificity of Influenza A Virus</title><source>Publicly Available Content Database</source><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Huang, Sheng-Yu ; Huang, Chih-Heng ; Chen, Chi-Jene ; Chen, Ting-Wen ; Lin, Chun-Yuan ; Lin, Yueh-Te ; Kuo, Shu-Ming ; Huang, Chung-Guei ; Lee, Li-Ang ; Chen, Yi-Hsiang ; Chen, Mei-Feng ; Kuo, Rei-Lin ; Shih, Shin-Ru</creator><creatorcontrib>Huang, Sheng-Yu ; Huang, Chih-Heng ; Chen, Chi-Jene ; Chen, Ting-Wen ; Lin, Chun-Yuan ; Lin, Yueh-Te ; Kuo, Shu-Ming ; Huang, Chung-Guei ; Lee, Li-Ang ; Chen, Yi-Hsiang ; Chen, Mei-Feng ; Kuo, Rei-Lin ; Shih, Shin-Ru</creatorcontrib><description>The role of microRNA (miRNA) in influenza A virus (IAV) host species specificity is not well understood as yet. Here, we show that a host miRNA, miR-1290, is induced through the extracellular signal-regulated kinase (ERK) pathway upon IAV infection and is associated with increased viral titers in human cells and ferret animal models. miR-1290 was observed to target and reduce expression of the host vimentin gene. Vimentin binds with the PB2 subunit of influenza A virus ribonucleoprotein (vRNP), and knockdown of vimentin expression significantly increased vRNP nuclear retention and viral polymerase activity. Interestingly, miR-1290 was not detected in either chicken cells or mouse animal models, and the 3′ UTR of the chicken vimentin gene contains no binding site for miR-1290. These findings point to a host species-specific mechanism by which IAV upregulates miR-1290 to disrupt vimentin expression and retain vRNP in the nucleus, thereby enhancing viral polymerase activity and viral replication.
[Display omitted]</description><identifier>ISSN: 2162-2531</identifier><identifier>EISSN: 2162-2531</identifier><identifier>DOI: 10.1016/j.omtn.2019.04.028</identifier><identifier>PMID: 31173947</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animal models ; Binding sites ; Cell culture ; Experiments ; Extracellular signal-regulated kinase ; ferret ; Gene expression ; host species-specificity ; Infections ; Influenza ; Influenza A ; influenza A virus ; Mammals ; Metabolic pathways ; MicroRNAs ; miR-1290 ; miRNA ; Proteins ; Species ; Statistical analysis ; Vimentin ; Viral infections ; viral ribonucleoprotein ; virus ; Viruses ; vRNP</subject><ispartof>Molecular therapy. Nucleic acids, 2019-09, Vol.17, p.10-23</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Sep 6, 2019</rights><rights>2019. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-a1ca11a0de7702583118c54246eba4b61203f5bfd2d3c4c494402aa41e75a4c3</citedby><cites>FETCH-LOGICAL-c549t-a1ca11a0de7702583118c54246eba4b61203f5bfd2d3c4c494402aa41e75a4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554369/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2308417216?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,25753,27924,27925,37012,37013,44590,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31173947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Sheng-Yu</creatorcontrib><creatorcontrib>Huang, Chih-Heng</creatorcontrib><creatorcontrib>Chen, Chi-Jene</creatorcontrib><creatorcontrib>Chen, Ting-Wen</creatorcontrib><creatorcontrib>Lin, Chun-Yuan</creatorcontrib><creatorcontrib>Lin, Yueh-Te</creatorcontrib><creatorcontrib>Kuo, Shu-Ming</creatorcontrib><creatorcontrib>Huang, Chung-Guei</creatorcontrib><creatorcontrib>Lee, Li-Ang</creatorcontrib><creatorcontrib>Chen, Yi-Hsiang</creatorcontrib><creatorcontrib>Chen, Mei-Feng</creatorcontrib><creatorcontrib>Kuo, Rei-Lin</creatorcontrib><creatorcontrib>Shih, Shin-Ru</creatorcontrib><title>Novel Role for miR-1290 in Host Species Specificity of Influenza A Virus</title><title>Molecular therapy. Nucleic acids</title><addtitle>Mol Ther Nucleic Acids</addtitle><description>The role of microRNA (miRNA) in influenza A virus (IAV) host species specificity is not well understood as yet. Here, we show that a host miRNA, miR-1290, is induced through the extracellular signal-regulated kinase (ERK) pathway upon IAV infection and is associated with increased viral titers in human cells and ferret animal models. miR-1290 was observed to target and reduce expression of the host vimentin gene. Vimentin binds with the PB2 subunit of influenza A virus ribonucleoprotein (vRNP), and knockdown of vimentin expression significantly increased vRNP nuclear retention and viral polymerase activity. Interestingly, miR-1290 was not detected in either chicken cells or mouse animal models, and the 3′ UTR of the chicken vimentin gene contains no binding site for miR-1290. These findings point to a host species-specific mechanism by which IAV upregulates miR-1290 to disrupt vimentin expression and retain vRNP in the nucleus, thereby enhancing viral polymerase activity and viral replication.
[Display omitted]</description><subject>Animal models</subject><subject>Binding sites</subject><subject>Cell culture</subject><subject>Experiments</subject><subject>Extracellular signal-regulated kinase</subject><subject>ferret</subject><subject>Gene expression</subject><subject>host species-specificity</subject><subject>Infections</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>influenza A virus</subject><subject>Mammals</subject><subject>Metabolic pathways</subject><subject>MicroRNAs</subject><subject>miR-1290</subject><subject>miRNA</subject><subject>Proteins</subject><subject>Species</subject><subject>Statistical analysis</subject><subject>Vimentin</subject><subject>Viral infections</subject><subject>viral ribonucleoprotein</subject><subject>virus</subject><subject>Viruses</subject><subject>vRNP</subject><issn>2162-2531</issn><issn>2162-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhkVpaUKSP9BDEfTSi119WjaUQghpdyEkkIRehSyPUi22tZXshfTXVxsnIemhOmiE5p2XmXkQ-kBJSQmtvmzKMExjyQhtSiJKwuo36JDRihVMcvr2xfsAnaS0IflUhLKKvUcHnFLFG6EO0eoy7KDH16EH7ELEg78uKGsI9iNehTThmy1YD2mJzls_3ePg8Hp0_QzjH4NP8U8f53SM3jnTJzh5jEfo9vv57dmquLj6sT47vSisFM1UGGoNpYZ0oBRhss6d1DnDRAWtEW1FGeFOtq5jHbfCikYIwowRFJQ0wvIjtF5su2A2ehv9YOK9Dsbrh48Q77SJk7c9aGLByEapLt8CQNWiVbIj1oEzCjjPXt8Wr-3cDtBZGKdo-lemrzOj_6Xvwk5XUgpeNdng86NBDL9nSJMefLLQ92aEMCfNmMgUFCV76ad_pJswxzFvSjNOakFVVmYVW1Q2hpQiuOdmKNF77DqPmLHrPXZNhM7Yc9HHl2M8lzxBzoKviwAyl52HqFNGOlrofAQ75c35__n_BT7NvDc</recordid><startdate>20190906</startdate><enddate>20190906</enddate><creator>Huang, Sheng-Yu</creator><creator>Huang, Chih-Heng</creator><creator>Chen, Chi-Jene</creator><creator>Chen, Ting-Wen</creator><creator>Lin, Chun-Yuan</creator><creator>Lin, Yueh-Te</creator><creator>Kuo, Shu-Ming</creator><creator>Huang, Chung-Guei</creator><creator>Lee, Li-Ang</creator><creator>Chen, Yi-Hsiang</creator><creator>Chen, Mei-Feng</creator><creator>Kuo, Rei-Lin</creator><creator>Shih, Shin-Ru</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene & Cell Therapy</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190906</creationdate><title>Novel Role for miR-1290 in Host Species Specificity of Influenza A Virus</title><author>Huang, Sheng-Yu ; Huang, Chih-Heng ; Chen, Chi-Jene ; Chen, Ting-Wen ; Lin, Chun-Yuan ; Lin, Yueh-Te ; Kuo, Shu-Ming ; Huang, Chung-Guei ; Lee, Li-Ang ; Chen, Yi-Hsiang ; Chen, Mei-Feng ; Kuo, Rei-Lin ; Shih, Shin-Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-a1ca11a0de7702583118c54246eba4b61203f5bfd2d3c4c494402aa41e75a4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal models</topic><topic>Binding sites</topic><topic>Cell culture</topic><topic>Experiments</topic><topic>Extracellular signal-regulated kinase</topic><topic>ferret</topic><topic>Gene expression</topic><topic>host species-specificity</topic><topic>Infections</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>influenza A virus</topic><topic>Mammals</topic><topic>Metabolic pathways</topic><topic>MicroRNAs</topic><topic>miR-1290</topic><topic>miRNA</topic><topic>Proteins</topic><topic>Species</topic><topic>Statistical analysis</topic><topic>Vimentin</topic><topic>Viral infections</topic><topic>viral ribonucleoprotein</topic><topic>virus</topic><topic>Viruses</topic><topic>vRNP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Sheng-Yu</creatorcontrib><creatorcontrib>Huang, Chih-Heng</creatorcontrib><creatorcontrib>Chen, Chi-Jene</creatorcontrib><creatorcontrib>Chen, Ting-Wen</creatorcontrib><creatorcontrib>Lin, Chun-Yuan</creatorcontrib><creatorcontrib>Lin, Yueh-Te</creatorcontrib><creatorcontrib>Kuo, Shu-Ming</creatorcontrib><creatorcontrib>Huang, Chung-Guei</creatorcontrib><creatorcontrib>Lee, Li-Ang</creatorcontrib><creatorcontrib>Chen, Yi-Hsiang</creatorcontrib><creatorcontrib>Chen, Mei-Feng</creatorcontrib><creatorcontrib>Kuo, Rei-Lin</creatorcontrib><creatorcontrib>Shih, Shin-Ru</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular therapy. Nucleic acids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Sheng-Yu</au><au>Huang, Chih-Heng</au><au>Chen, Chi-Jene</au><au>Chen, Ting-Wen</au><au>Lin, Chun-Yuan</au><au>Lin, Yueh-Te</au><au>Kuo, Shu-Ming</au><au>Huang, Chung-Guei</au><au>Lee, Li-Ang</au><au>Chen, Yi-Hsiang</au><au>Chen, Mei-Feng</au><au>Kuo, Rei-Lin</au><au>Shih, Shin-Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Role for miR-1290 in Host Species Specificity of Influenza A Virus</atitle><jtitle>Molecular therapy. Nucleic acids</jtitle><addtitle>Mol Ther Nucleic Acids</addtitle><date>2019-09-06</date><risdate>2019</risdate><volume>17</volume><spage>10</spage><epage>23</epage><pages>10-23</pages><issn>2162-2531</issn><eissn>2162-2531</eissn><abstract>The role of microRNA (miRNA) in influenza A virus (IAV) host species specificity is not well understood as yet. Here, we show that a host miRNA, miR-1290, is induced through the extracellular signal-regulated kinase (ERK) pathway upon IAV infection and is associated with increased viral titers in human cells and ferret animal models. miR-1290 was observed to target and reduce expression of the host vimentin gene. Vimentin binds with the PB2 subunit of influenza A virus ribonucleoprotein (vRNP), and knockdown of vimentin expression significantly increased vRNP nuclear retention and viral polymerase activity. Interestingly, miR-1290 was not detected in either chicken cells or mouse animal models, and the 3′ UTR of the chicken vimentin gene contains no binding site for miR-1290. These findings point to a host species-specific mechanism by which IAV upregulates miR-1290 to disrupt vimentin expression and retain vRNP in the nucleus, thereby enhancing viral polymerase activity and viral replication.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31173947</pmid><doi>10.1016/j.omtn.2019.04.028</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-2531 |
ispartof | Molecular therapy. Nucleic acids, 2019-09, Vol.17, p.10-23 |
issn | 2162-2531 2162-2531 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0cea5977da594ee784b75d0cfefa7e33 |
source | Publicly Available Content Database; Elsevier ScienceDirect Journals; PubMed Central |
subjects | Animal models Binding sites Cell culture Experiments Extracellular signal-regulated kinase ferret Gene expression host species-specificity Infections Influenza Influenza A influenza A virus Mammals Metabolic pathways MicroRNAs miR-1290 miRNA Proteins Species Statistical analysis Vimentin Viral infections viral ribonucleoprotein virus Viruses vRNP |
title | Novel Role for miR-1290 in Host Species Specificity of Influenza A Virus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Role%20for%20miR-1290%20in%20Host%20Species%20Specificity%20of%20Influenza%20A%20Virus&rft.jtitle=Molecular%20therapy.%20Nucleic%20acids&rft.au=Huang,%20Sheng-Yu&rft.date=2019-09-06&rft.volume=17&rft.spage=10&rft.epage=23&rft.pages=10-23&rft.issn=2162-2531&rft.eissn=2162-2531&rft_id=info:doi/10.1016/j.omtn.2019.04.028&rft_dat=%3Cproquest_doaj_%3E2308417216%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-a1ca11a0de7702583118c54246eba4b61203f5bfd2d3c4c494402aa41e75a4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2308417216&rft_id=info:pmid/31173947&rfr_iscdi=true |