Loading…
Designing a Renewable Jet Fuel Supply Chain: Leveraging Incentive Policies to Drive Commercialization and Sustainability
Renewable jet fuel (RJF) production has been recognized as a promising approach for reducing the aviation sector’s carbon footprint. Over the last decade, the commercial production of RJF has piqued the interest of airlines and governments around the world. However, RJF production can be challenging...
Saved in:
Published in: | Mathematics (Basel) 2023-12, Vol.11 (24), p.4915 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Renewable jet fuel (RJF) production has been recognized as a promising approach for reducing the aviation sector’s carbon footprint. Over the last decade, the commercial production of RJF has piqued the interest of airlines and governments around the world. However, RJF production can be challenging due to its dispersed supply resources. Furthermore, the production of RJF is more costly compared to producing conventional jet fuel. In this study, using a mixed integer linear programming (MILP), we design a corn-stover-based RJF supply chain network in which we obtain an optimized configuration of the supply chain and determine operational decisions required to meet RJF demand at airports. To accelerate the commercialization of RJF production, we examined four incentive programs designed to cover the supply chain’s costs, with agricultural statistics districts serving as the designated supply regions. This study is validated by employing the model to design the supply chain in the Midwestern United States. The results from this study are promising as they show the supply chain can achieve commercialization with partial financial coverage from the incentive programs. Based on the findings of this study, policymakers can devise policies to commercialize RJF production and accelerate its adoption by the industry. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11244915 |