Loading…

A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica

Photosynthetic oleaginous microalgae are considered promising feedstocks for biofuels. The marine microalga, has been attracting ever-increasing interest because of its fast growth, high triacylglycerol (TAG) content, and available genome sequence and genetic tools. Diacylglycerol acyltransferase (D...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology for biofuels 2017-07, Vol.10 (1), p.174-174, Article 174
Main Authors: Wei, Hehong, Shi, Ying, Ma, Xiaonian, Pan, Yufang, Hu, Hanhua, Li, Yantao, Luo, Ming, Gerken, Henri, Liu, Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c632t-819b974c2366dd75b5a4d1c11884fd9b2ca53f8a3356c1a75b676bdbb29d74d13
cites cdi_FETCH-LOGICAL-c632t-819b974c2366dd75b5a4d1c11884fd9b2ca53f8a3356c1a75b676bdbb29d74d13
container_end_page 174
container_issue 1
container_start_page 174
container_title Biotechnology for biofuels
container_volume 10
creator Wei, Hehong
Shi, Ying
Ma, Xiaonian
Pan, Yufang
Hu, Hanhua
Li, Yantao
Luo, Ming
Gerken, Henri
Liu, Jin
description Photosynthetic oleaginous microalgae are considered promising feedstocks for biofuels. The marine microalga, has been attracting ever-increasing interest because of its fast growth, high triacylglycerol (TAG) content, and available genome sequence and genetic tools. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step of TAG biosynthesis in the acyl-CoA-dependent pathway. Previous studies have identified 13 putative DGAT-encoding genes in the genome of , but the functional role of genes, especially type-I ( ), remains ambiguous. IMET1 possesses two genes: and . Functional complementation demonstrated the capability of NoDGAT1A rather than NoDGAT1B to restore TAG synthesis in a TAG-deficient yeast strain. In vitro DGAT assays revealed that NoDGAT1A preferred saturated/monounsaturated acyl-CoAs and eukaryotic diacylglycerols (DAGs) for TAG synthesis, while NoDGAT1B had no detectable enzymatic activity. Assisted with green fluorescence protein (GFP) fusion, fluorescence microscopy analysis indicated the localization of NoDGAT1A in the chloroplast endoplasmic reticulum (cER) of . knockdown caused ~25% decline in TAG content upon nitrogen depletion, accompanied by the reduced C16:0, C18:0, and C18:1 in TAG -1/ -3 positions and C18:1 in the TAG -2 position. overexpression, on the other hand, led to ~39% increase in TAG content upon nitrogen depletion, accompanied by the enhanced C16:0 and C18:1 in the TAG -1/ -3 positions and C18:1 in the TAG -2 position. Interestingly, overexpression also promoted TAG accumulation (by ~2.4-fold) under nitrogen-replete conditions without compromising cell growth, and TAG yield of the overexpression line reached 0.49 g L at the end of a 10-day batch culture, 47% greater than that of the control line. Taken together, our work demonstrates the functional role of NoDGAT1A and sheds light on the underlying mechanism for the biosynthesis of various TAG species in NoDGAT1A resides likely in cER and prefers to transfer C16 and C18 saturated/monounsaturated fatty acids to eukaryotic DAGs for TAG assembly. This work also provides insights into the rational genetic engineering of microalgae by manipulating rate-limiting enzymes such as DGAT to modulate TAG biosynthesis and fatty acid composition for biofuel production.
doi_str_mv 10.1186/s13068-017-0858-1
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0cfca237f709430dad83023868a56da3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A511312193</galeid><doaj_id>oai_doaj_org_article_0cfca237f709430dad83023868a56da3</doaj_id><sourcerecordid>A511312193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-819b974c2366dd75b5a4d1c11884fd9b2ca53f8a3356c1a75b676bdbb29d74d13</originalsourceid><addsrcrecordid>eNpdkluP1CAYhhujcdfRH-CNIfFGE7tCKZTebDLZeJhko4mHa_IVaIdNCyNQY3-Nf1XqrJsdwwWn53uBl7conhN8QYjgbyOhmIsSk6bEgomSPCjOScPqkgtaP7w3PiuexHiDMScNbh4XZ5XgbS1qdl783qK0HEy5Q9qCWsZhXJQJfkTrJAVwsTcBokGT1_MIyUSUwinZWR8Xl_Ym2ojAadRDSksWsBopPx18tMl6h6xDGUJ-NDBY5-eIJquCh3GAN-gTOOfVfvTBH1Ydrww4q-Bp8aiHMZpnt_2m-P7-3berj-X15w-7q-11qTitUilI27VNrSrKudYN6xjUmqjskqh73XaVAkZ7AZQyrghkgDe8011XtbrJJN0Uu6Ou9nAjD8FOEBbpwcq_Cz4MEkKyajQSq15BRZu-wW1NsQYtKK6o4AIY1_mITXF51DrM3WS0Mi4bOZ6Inu44u5eD_ylZ3baYrwKvbgWC_zGbmORkozLjCM5k3yRpSdPyqhU4oy__Q2_8HFy2KlMVY0RgJjJ1caQGyA-wrvf5XJWbNvkPvDO9zetbRgglFWnXG7w-KchMMr_SAHOMcvf1yylLjmz-zBiD6e9eSrBccyqPOZU5p3LNqVztfnHforuKf8GkfwAMt-by</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925518058</pqid></control><display><type>article</type><title>A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><creator>Wei, Hehong ; Shi, Ying ; Ma, Xiaonian ; Pan, Yufang ; Hu, Hanhua ; Li, Yantao ; Luo, Ming ; Gerken, Henri ; Liu, Jin</creator><creatorcontrib>Wei, Hehong ; Shi, Ying ; Ma, Xiaonian ; Pan, Yufang ; Hu, Hanhua ; Li, Yantao ; Luo, Ming ; Gerken, Henri ; Liu, Jin</creatorcontrib><description>Photosynthetic oleaginous microalgae are considered promising feedstocks for biofuels. The marine microalga, has been attracting ever-increasing interest because of its fast growth, high triacylglycerol (TAG) content, and available genome sequence and genetic tools. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step of TAG biosynthesis in the acyl-CoA-dependent pathway. Previous studies have identified 13 putative DGAT-encoding genes in the genome of , but the functional role of genes, especially type-I ( ), remains ambiguous. IMET1 possesses two genes: and . Functional complementation demonstrated the capability of NoDGAT1A rather than NoDGAT1B to restore TAG synthesis in a TAG-deficient yeast strain. In vitro DGAT assays revealed that NoDGAT1A preferred saturated/monounsaturated acyl-CoAs and eukaryotic diacylglycerols (DAGs) for TAG synthesis, while NoDGAT1B had no detectable enzymatic activity. Assisted with green fluorescence protein (GFP) fusion, fluorescence microscopy analysis indicated the localization of NoDGAT1A in the chloroplast endoplasmic reticulum (cER) of . knockdown caused ~25% decline in TAG content upon nitrogen depletion, accompanied by the reduced C16:0, C18:0, and C18:1 in TAG -1/ -3 positions and C18:1 in the TAG -2 position. overexpression, on the other hand, led to ~39% increase in TAG content upon nitrogen depletion, accompanied by the enhanced C16:0 and C18:1 in the TAG -1/ -3 positions and C18:1 in the TAG -2 position. Interestingly, overexpression also promoted TAG accumulation (by ~2.4-fold) under nitrogen-replete conditions without compromising cell growth, and TAG yield of the overexpression line reached 0.49 g L at the end of a 10-day batch culture, 47% greater than that of the control line. Taken together, our work demonstrates the functional role of NoDGAT1A and sheds light on the underlying mechanism for the biosynthesis of various TAG species in NoDGAT1A resides likely in cER and prefers to transfer C16 and C18 saturated/monounsaturated fatty acids to eukaryotic DAGs for TAG assembly. This work also provides insights into the rational genetic engineering of microalgae by manipulating rate-limiting enzymes such as DGAT to modulate TAG biosynthesis and fatty acid composition for biofuel production.</description><identifier>ISSN: 1754-6834</identifier><identifier>EISSN: 1754-6834</identifier><identifier>DOI: 10.1186/s13068-017-0858-1</identifier><identifier>PMID: 28694845</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acyltransferase ; Algae ; Batch culture ; Biodiesel fuels ; Biofuels ; Biomass ; Biosynthesis ; Cell culture ; Cell growth ; Chloroplasts ; Complementation ; Depletion ; Diacylglycerol acyltransferase ; Diacylglycerol O-acyltransferase ; Diglycerides ; Endoplasmic reticulum ; Enzymatic activity ; Enzymes ; Fatty acid composition ; Fatty acids ; Fluorescence ; Fluorescence microscopy ; Fuels ; Functional characterization ; Fusion protein ; Genes ; Genetic engineering ; Genomes ; Green fluorescent protein ; In vitro methods and tests ; Lipids ; Localization ; Metabolism ; Microalga ; Microalgae ; Nannochloropsis oceanica ; Nitrogen ; Nucleotide sequence ; Petroleum production ; Photosynthesis ; Position (location) ; Roles ; Seeds ; Synthesis ; Triacylglycerol ; Triglycerides ; Yeast ; Yeasts</subject><ispartof>Biotechnology for biofuels, 2017-07, Vol.10 (1), p.174-174, Article 174</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2017</rights><rights>The Author(s) 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-819b974c2366dd75b5a4d1c11884fd9b2ca53f8a3356c1a75b676bdbb29d74d13</citedby><cites>FETCH-LOGICAL-c632t-819b974c2366dd75b5a4d1c11884fd9b2ca53f8a3356c1a75b676bdbb29d74d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499063/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1925518058?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28694845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Hehong</creatorcontrib><creatorcontrib>Shi, Ying</creatorcontrib><creatorcontrib>Ma, Xiaonian</creatorcontrib><creatorcontrib>Pan, Yufang</creatorcontrib><creatorcontrib>Hu, Hanhua</creatorcontrib><creatorcontrib>Li, Yantao</creatorcontrib><creatorcontrib>Luo, Ming</creatorcontrib><creatorcontrib>Gerken, Henri</creatorcontrib><creatorcontrib>Liu, Jin</creatorcontrib><title>A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica</title><title>Biotechnology for biofuels</title><addtitle>Biotechnol Biofuels</addtitle><description>Photosynthetic oleaginous microalgae are considered promising feedstocks for biofuels. The marine microalga, has been attracting ever-increasing interest because of its fast growth, high triacylglycerol (TAG) content, and available genome sequence and genetic tools. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step of TAG biosynthesis in the acyl-CoA-dependent pathway. Previous studies have identified 13 putative DGAT-encoding genes in the genome of , but the functional role of genes, especially type-I ( ), remains ambiguous. IMET1 possesses two genes: and . Functional complementation demonstrated the capability of NoDGAT1A rather than NoDGAT1B to restore TAG synthesis in a TAG-deficient yeast strain. In vitro DGAT assays revealed that NoDGAT1A preferred saturated/monounsaturated acyl-CoAs and eukaryotic diacylglycerols (DAGs) for TAG synthesis, while NoDGAT1B had no detectable enzymatic activity. Assisted with green fluorescence protein (GFP) fusion, fluorescence microscopy analysis indicated the localization of NoDGAT1A in the chloroplast endoplasmic reticulum (cER) of . knockdown caused ~25% decline in TAG content upon nitrogen depletion, accompanied by the reduced C16:0, C18:0, and C18:1 in TAG -1/ -3 positions and C18:1 in the TAG -2 position. overexpression, on the other hand, led to ~39% increase in TAG content upon nitrogen depletion, accompanied by the enhanced C16:0 and C18:1 in the TAG -1/ -3 positions and C18:1 in the TAG -2 position. Interestingly, overexpression also promoted TAG accumulation (by ~2.4-fold) under nitrogen-replete conditions without compromising cell growth, and TAG yield of the overexpression line reached 0.49 g L at the end of a 10-day batch culture, 47% greater than that of the control line. Taken together, our work demonstrates the functional role of NoDGAT1A and sheds light on the underlying mechanism for the biosynthesis of various TAG species in NoDGAT1A resides likely in cER and prefers to transfer C16 and C18 saturated/monounsaturated fatty acids to eukaryotic DAGs for TAG assembly. This work also provides insights into the rational genetic engineering of microalgae by manipulating rate-limiting enzymes such as DGAT to modulate TAG biosynthesis and fatty acid composition for biofuel production.</description><subject>Acyltransferase</subject><subject>Algae</subject><subject>Batch culture</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Biosynthesis</subject><subject>Cell culture</subject><subject>Cell growth</subject><subject>Chloroplasts</subject><subject>Complementation</subject><subject>Depletion</subject><subject>Diacylglycerol acyltransferase</subject><subject>Diacylglycerol O-acyltransferase</subject><subject>Diglycerides</subject><subject>Endoplasmic reticulum</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Fatty acid composition</subject><subject>Fatty acids</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Fuels</subject><subject>Functional characterization</subject><subject>Fusion protein</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Green fluorescent protein</subject><subject>In vitro methods and tests</subject><subject>Lipids</subject><subject>Localization</subject><subject>Metabolism</subject><subject>Microalga</subject><subject>Microalgae</subject><subject>Nannochloropsis oceanica</subject><subject>Nitrogen</subject><subject>Nucleotide sequence</subject><subject>Petroleum production</subject><subject>Photosynthesis</subject><subject>Position (location)</subject><subject>Roles</subject><subject>Seeds</subject><subject>Synthesis</subject><subject>Triacylglycerol</subject><subject>Triglycerides</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1754-6834</issn><issn>1754-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkluP1CAYhhujcdfRH-CNIfFGE7tCKZTebDLZeJhko4mHa_IVaIdNCyNQY3-Nf1XqrJsdwwWn53uBl7conhN8QYjgbyOhmIsSk6bEgomSPCjOScPqkgtaP7w3PiuexHiDMScNbh4XZ5XgbS1qdl783qK0HEy5Q9qCWsZhXJQJfkTrJAVwsTcBokGT1_MIyUSUwinZWR8Xl_Ym2ojAadRDSksWsBopPx18tMl6h6xDGUJ-NDBY5-eIJquCh3GAN-gTOOfVfvTBH1Ydrww4q-Bp8aiHMZpnt_2m-P7-3berj-X15w-7q-11qTitUilI27VNrSrKudYN6xjUmqjskqh73XaVAkZ7AZQyrghkgDe8011XtbrJJN0Uu6Ou9nAjD8FOEBbpwcq_Cz4MEkKyajQSq15BRZu-wW1NsQYtKK6o4AIY1_mITXF51DrM3WS0Mi4bOZ6Inu44u5eD_ylZ3baYrwKvbgWC_zGbmORkozLjCM5k3yRpSdPyqhU4oy__Q2_8HFy2KlMVY0RgJjJ1caQGyA-wrvf5XJWbNvkPvDO9zetbRgglFWnXG7w-KchMMr_SAHOMcvf1yylLjmz-zBiD6e9eSrBccyqPOZU5p3LNqVztfnHforuKf8GkfwAMt-by</recordid><startdate>20170705</startdate><enddate>20170705</enddate><creator>Wei, Hehong</creator><creator>Shi, Ying</creator><creator>Ma, Xiaonian</creator><creator>Pan, Yufang</creator><creator>Hu, Hanhua</creator><creator>Li, Yantao</creator><creator>Luo, Ming</creator><creator>Gerken, Henri</creator><creator>Liu, Jin</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170705</creationdate><title>A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica</title><author>Wei, Hehong ; Shi, Ying ; Ma, Xiaonian ; Pan, Yufang ; Hu, Hanhua ; Li, Yantao ; Luo, Ming ; Gerken, Henri ; Liu, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-819b974c2366dd75b5a4d1c11884fd9b2ca53f8a3356c1a75b676bdbb29d74d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acyltransferase</topic><topic>Algae</topic><topic>Batch culture</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Biosynthesis</topic><topic>Cell culture</topic><topic>Cell growth</topic><topic>Chloroplasts</topic><topic>Complementation</topic><topic>Depletion</topic><topic>Diacylglycerol acyltransferase</topic><topic>Diacylglycerol O-acyltransferase</topic><topic>Diglycerides</topic><topic>Endoplasmic reticulum</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Fatty acid composition</topic><topic>Fatty acids</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Fuels</topic><topic>Functional characterization</topic><topic>Fusion protein</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Green fluorescent protein</topic><topic>In vitro methods and tests</topic><topic>Lipids</topic><topic>Localization</topic><topic>Metabolism</topic><topic>Microalga</topic><topic>Microalgae</topic><topic>Nannochloropsis oceanica</topic><topic>Nitrogen</topic><topic>Nucleotide sequence</topic><topic>Petroleum production</topic><topic>Photosynthesis</topic><topic>Position (location)</topic><topic>Roles</topic><topic>Seeds</topic><topic>Synthesis</topic><topic>Triacylglycerol</topic><topic>Triglycerides</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei, Hehong</creatorcontrib><creatorcontrib>Shi, Ying</creatorcontrib><creatorcontrib>Ma, Xiaonian</creatorcontrib><creatorcontrib>Pan, Yufang</creatorcontrib><creatorcontrib>Hu, Hanhua</creatorcontrib><creatorcontrib>Li, Yantao</creatorcontrib><creatorcontrib>Luo, Ming</creatorcontrib><creatorcontrib>Gerken, Henri</creatorcontrib><creatorcontrib>Liu, Jin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Biotechnology for biofuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Hehong</au><au>Shi, Ying</au><au>Ma, Xiaonian</au><au>Pan, Yufang</au><au>Hu, Hanhua</au><au>Li, Yantao</au><au>Luo, Ming</au><au>Gerken, Henri</au><au>Liu, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica</atitle><jtitle>Biotechnology for biofuels</jtitle><addtitle>Biotechnol Biofuels</addtitle><date>2017-07-05</date><risdate>2017</risdate><volume>10</volume><issue>1</issue><spage>174</spage><epage>174</epage><pages>174-174</pages><artnum>174</artnum><issn>1754-6834</issn><eissn>1754-6834</eissn><abstract>Photosynthetic oleaginous microalgae are considered promising feedstocks for biofuels. The marine microalga, has been attracting ever-increasing interest because of its fast growth, high triacylglycerol (TAG) content, and available genome sequence and genetic tools. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step of TAG biosynthesis in the acyl-CoA-dependent pathway. Previous studies have identified 13 putative DGAT-encoding genes in the genome of , but the functional role of genes, especially type-I ( ), remains ambiguous. IMET1 possesses two genes: and . Functional complementation demonstrated the capability of NoDGAT1A rather than NoDGAT1B to restore TAG synthesis in a TAG-deficient yeast strain. In vitro DGAT assays revealed that NoDGAT1A preferred saturated/monounsaturated acyl-CoAs and eukaryotic diacylglycerols (DAGs) for TAG synthesis, while NoDGAT1B had no detectable enzymatic activity. Assisted with green fluorescence protein (GFP) fusion, fluorescence microscopy analysis indicated the localization of NoDGAT1A in the chloroplast endoplasmic reticulum (cER) of . knockdown caused ~25% decline in TAG content upon nitrogen depletion, accompanied by the reduced C16:0, C18:0, and C18:1 in TAG -1/ -3 positions and C18:1 in the TAG -2 position. overexpression, on the other hand, led to ~39% increase in TAG content upon nitrogen depletion, accompanied by the enhanced C16:0 and C18:1 in the TAG -1/ -3 positions and C18:1 in the TAG -2 position. Interestingly, overexpression also promoted TAG accumulation (by ~2.4-fold) under nitrogen-replete conditions without compromising cell growth, and TAG yield of the overexpression line reached 0.49 g L at the end of a 10-day batch culture, 47% greater than that of the control line. Taken together, our work demonstrates the functional role of NoDGAT1A and sheds light on the underlying mechanism for the biosynthesis of various TAG species in NoDGAT1A resides likely in cER and prefers to transfer C16 and C18 saturated/monounsaturated fatty acids to eukaryotic DAGs for TAG assembly. This work also provides insights into the rational genetic engineering of microalgae by manipulating rate-limiting enzymes such as DGAT to modulate TAG biosynthesis and fatty acid composition for biofuel production.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>28694845</pmid><doi>10.1186/s13068-017-0858-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-6834
ispartof Biotechnology for biofuels, 2017-07, Vol.10 (1), p.174-174, Article 174
issn 1754-6834
1754-6834
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0cfca237f709430dad83023868a56da3
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Full-Text Journals in Chemistry (Open access); PubMed Central
subjects Acyltransferase
Algae
Batch culture
Biodiesel fuels
Biofuels
Biomass
Biosynthesis
Cell culture
Cell growth
Chloroplasts
Complementation
Depletion
Diacylglycerol acyltransferase
Diacylglycerol O-acyltransferase
Diglycerides
Endoplasmic reticulum
Enzymatic activity
Enzymes
Fatty acid composition
Fatty acids
Fluorescence
Fluorescence microscopy
Fuels
Functional characterization
Fusion protein
Genes
Genetic engineering
Genomes
Green fluorescent protein
In vitro methods and tests
Lipids
Localization
Metabolism
Microalga
Microalgae
Nannochloropsis oceanica
Nitrogen
Nucleotide sequence
Petroleum production
Photosynthesis
Position (location)
Roles
Seeds
Synthesis
Triacylglycerol
Triglycerides
Yeast
Yeasts
title A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20type-I%20diacylglycerol%20acyltransferase%20modulates%20triacylglycerol%20biosynthesis%20and%20fatty%20acid%20composition%20in%20the%20oleaginous%20microalga,%20Nannochloropsis%20oceanica&rft.jtitle=Biotechnology%20for%20biofuels&rft.au=Wei,%20Hehong&rft.date=2017-07-05&rft.volume=10&rft.issue=1&rft.spage=174&rft.epage=174&rft.pages=174-174&rft.artnum=174&rft.issn=1754-6834&rft.eissn=1754-6834&rft_id=info:doi/10.1186/s13068-017-0858-1&rft_dat=%3Cgale_doaj_%3EA511312193%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c632t-819b974c2366dd75b5a4d1c11884fd9b2ca53f8a3356c1a75b676bdbb29d74d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1925518058&rft_id=info:pmid/28694845&rft_galeid=A511312193&rfr_iscdi=true