Loading…
In vivo evidence for an instructive role of fms-like tyrosine kinase-3 (FLT3) ligand in hematopoietic development
Cytokines are essential regulators of hematopoiesis, acting in an instructive or permissive way. Fms-like tyrosine kinase 3 ligand (FLT3L) is an important cytokine for the development of several hematopoietic populations. Its receptor (FLT3) is expressed on both myeloid and lymphoid progenitors and...
Saved in:
Published in: | Haematologica (Roma) 2014-04, Vol.99 (4), p.638-646 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cytokines are essential regulators of hematopoiesis, acting in an instructive or permissive way. Fms-like tyrosine kinase 3 ligand (FLT3L) is an important cytokine for the development of several hematopoietic populations. Its receptor (FLT3) is expressed on both myeloid and lymphoid progenitors and deletion of either the receptor or its ligand leads to defective developmental potential of hematopoietic progenitors. In vivo administration of FLT3L promotes expansion of progenitors with combined myeloid and lymphoid potential. To investigate further the role of this cytokine in hematopoietic development, we generated transgenic mice expressing high levels of human FLT3L. These transgenic mice displayed a dramatic expansion of dendritic and myeloid cells, leading to splenomegaly and blood leukocytosis. Bone marrow myeloid and lymphoid progenitors were significantly increased in numbers but retained their developmental potential. Furthermore, the transgenic mice developed anemia together with a reduction in platelet numbers. FLT3L was shown to rapidly reduce the earliest erythroid progenitors when injected into wild-type mice, indicating a direct negative role of the cytokine on erythropoiesis. We conclude that FLT3L acts on multipotent progenitors in an instructive way, inducing their development into myeloid/lymphoid lineages while suppressing their megakaryocyte/erythrocyte potential. |
---|---|
ISSN: | 0390-6078 1592-8721 |
DOI: | 10.3324/haematol.2013.089482 |