Loading…

How to handle glacier area change in geodetic mass balance

Innovations in geodesy enable widespread analysis of glacier surface elevation change and geodetic mass balance. However, coincident glacier area data are less widely available, causing inconsistent handling of glacier area change. Here we quantify the bias introduced into meters water equivalent (m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of glaciology 2023-12, Vol.69 (278), p.2169-2175
Main Authors: Florentine, Caitlyn, Sass, Louis, McNeil, Christopher, Baker, Emily, O'Neel, Shad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c360t-61a1e454447412a9ac1077f5b94a05155077d6b5e1d40c91076b2e1fed17dd7c3
container_end_page 2175
container_issue 278
container_start_page 2169
container_title Journal of glaciology
container_volume 69
creator Florentine, Caitlyn
Sass, Louis
McNeil, Christopher
Baker, Emily
O'Neel, Shad
description Innovations in geodesy enable widespread analysis of glacier surface elevation change and geodetic mass balance. However, coincident glacier area data are less widely available, causing inconsistent handling of glacier area change. Here we quantify the bias introduced into meters water equivalent (m w.e.) specific geodetic mass balance results when using a fixed, maximum glacier area, and illustrate the bias for five North American glaciers. Sites span latitudes from the northern U.S. Rocky Mountains (48°N) to the Central Alaska Range (63°N) between 1948 and 2021. Results show that fixed (maximum) area treatment subdues the m w.e. mass change signal, underestimating mass balance by up to 19% in our test cases. This bias scales with relative glacier area change and the mass balance magnitude. Thus, the bias for specific geodetic mass balances will be most pronounced across rapidly deglaciating regions. Our analysis underscores the need for temporally resolved glacier area in geodetic mass balance studies.
doi_str_mv 10.1017/jog.2023.86
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0d079ba073ca42ac8af2133ea1b3592c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jog_2023_86</cupid><doaj_id>oai_doaj_org_article_0d079ba073ca42ac8af2133ea1b3592c</doaj_id><sourcerecordid>3142815581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-61a1e454447412a9ac1077f5b94a05155077d6b5e1d40c91076b2e1fed17dd7c3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKsn_0DAo2zN5GOz603Ej0LBi57DbDK7btk2NVsR_72pFb14Gt6ZZ955GcbOQcxAgL1axm4mhVSzqjxgE7DSFqY08pBNhJCyAK3EMTsZx2WWtQGYsOvH-MG3kb_iOgzEuwF9T4ljIuQ-Nzvi_Zp3FANte89XOI68wQHXnk7ZUYvDSGc_dcpe7u-ebx-LxdPD_PZmUXhVim1RAgJpo7W2GiTW6EFY25qm1igMGJNVKBtDELTwdR6WjSRoKYANwXo1ZfO9b4i4dJvUrzB9uoi9-27E1DlMOdxATgRh6waFVR61RF9hK0EpQmiUqeXO62LvtUnx7Z3GrVvG97TO8Z0CLascp4JMXe4pn-I4Jmp_r4Jwu0fnrc7tHu2qMtPFD42rJvWhoz_T__gvFJ180g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142815581</pqid></control><display><type>article</type><title>How to handle glacier area change in geodetic mass balance</title><source>Cambridge Journals Online</source><source>Publicly Available Content Database</source><creator>Florentine, Caitlyn ; Sass, Louis ; McNeil, Christopher ; Baker, Emily ; O'Neel, Shad</creator><creatorcontrib>Florentine, Caitlyn ; Sass, Louis ; McNeil, Christopher ; Baker, Emily ; O'Neel, Shad</creatorcontrib><description>Innovations in geodesy enable widespread analysis of glacier surface elevation change and geodetic mass balance. However, coincident glacier area data are less widely available, causing inconsistent handling of glacier area change. Here we quantify the bias introduced into meters water equivalent (m w.e.) specific geodetic mass balance results when using a fixed, maximum glacier area, and illustrate the bias for five North American glaciers. Sites span latitudes from the northern U.S. Rocky Mountains (48°N) to the Central Alaska Range (63°N) between 1948 and 2021. Results show that fixed (maximum) area treatment subdues the m w.e. mass change signal, underestimating mass balance by up to 19% in our test cases. This bias scales with relative glacier area change and the mass balance magnitude. Thus, the bias for specific geodetic mass balances will be most pronounced across rapidly deglaciating regions. Our analysis underscores the need for temporally resolved glacier area in geodetic mass balance studies.</description><identifier>ISSN: 0022-1430</identifier><identifier>EISSN: 1727-5652</identifier><identifier>DOI: 10.1017/jog.2023.86</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Balance studies ; Bias ; Geodesy ; Geology ; glacier mapping ; glacier mass balance ; Glaciers ; Letter ; Mass balance ; Mass balance of glaciers ; mountain glaciers ; Mountains ; Remote sensing ; Time series</subject><ispartof>Journal of glaciology, 2023-12, Vol.69 (278), p.2169-2175</ispartof><rights>Copyright © U.S. Geological Survey and the Author(s), 2023. Published by Cambridge University Press on behalf of International Glaciological Society</rights><rights>Copyright © U.S. Geological Survey and the Author(s), 2023. Published by Cambridge University Press on behalf of International Glaciological Society. To the extent this is a work of the US Government, it is not subject to copyright protection within the United States.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-61a1e454447412a9ac1077f5b94a05155077d6b5e1d40c91076b2e1fed17dd7c3</cites><orcidid>0000-0003-4170-0428 ; 0000-0002-9185-0144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3142815581/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3142815581?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,72960,75126</link.rule.ids></links><search><creatorcontrib>Florentine, Caitlyn</creatorcontrib><creatorcontrib>Sass, Louis</creatorcontrib><creatorcontrib>McNeil, Christopher</creatorcontrib><creatorcontrib>Baker, Emily</creatorcontrib><creatorcontrib>O'Neel, Shad</creatorcontrib><title>How to handle glacier area change in geodetic mass balance</title><title>Journal of glaciology</title><addtitle>J. Glaciol</addtitle><description>Innovations in geodesy enable widespread analysis of glacier surface elevation change and geodetic mass balance. However, coincident glacier area data are less widely available, causing inconsistent handling of glacier area change. Here we quantify the bias introduced into meters water equivalent (m w.e.) specific geodetic mass balance results when using a fixed, maximum glacier area, and illustrate the bias for five North American glaciers. Sites span latitudes from the northern U.S. Rocky Mountains (48°N) to the Central Alaska Range (63°N) between 1948 and 2021. Results show that fixed (maximum) area treatment subdues the m w.e. mass change signal, underestimating mass balance by up to 19% in our test cases. This bias scales with relative glacier area change and the mass balance magnitude. Thus, the bias for specific geodetic mass balances will be most pronounced across rapidly deglaciating regions. Our analysis underscores the need for temporally resolved glacier area in geodetic mass balance studies.</description><subject>Balance studies</subject><subject>Bias</subject><subject>Geodesy</subject><subject>Geology</subject><subject>glacier mapping</subject><subject>glacier mass balance</subject><subject>Glaciers</subject><subject>Letter</subject><subject>Mass balance</subject><subject>Mass balance of glaciers</subject><subject>mountain glaciers</subject><subject>Mountains</subject><subject>Remote sensing</subject><subject>Time series</subject><issn>0022-1430</issn><issn>1727-5652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkE1LAzEQhoMoWKsn_0DAo2zN5GOz603Ej0LBi57DbDK7btk2NVsR_72pFb14Gt6ZZ955GcbOQcxAgL1axm4mhVSzqjxgE7DSFqY08pBNhJCyAK3EMTsZx2WWtQGYsOvH-MG3kb_iOgzEuwF9T4ljIuQ-Nzvi_Zp3FANte89XOI68wQHXnk7ZUYvDSGc_dcpe7u-ebx-LxdPD_PZmUXhVim1RAgJpo7W2GiTW6EFY25qm1igMGJNVKBtDELTwdR6WjSRoKYANwXo1ZfO9b4i4dJvUrzB9uoi9-27E1DlMOdxATgRh6waFVR61RF9hK0EpQmiUqeXO62LvtUnx7Z3GrVvG97TO8Z0CLascp4JMXe4pn-I4Jmp_r4Jwu0fnrc7tHu2qMtPFD42rJvWhoz_T__gvFJ180g</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Florentine, Caitlyn</creator><creator>Sass, Louis</creator><creator>McNeil, Christopher</creator><creator>Baker, Emily</creator><creator>O'Neel, Shad</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4170-0428</orcidid><orcidid>https://orcid.org/0000-0002-9185-0144</orcidid></search><sort><creationdate>20231201</creationdate><title>How to handle glacier area change in geodetic mass balance</title><author>Florentine, Caitlyn ; Sass, Louis ; McNeil, Christopher ; Baker, Emily ; O'Neel, Shad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-61a1e454447412a9ac1077f5b94a05155077d6b5e1d40c91076b2e1fed17dd7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Balance studies</topic><topic>Bias</topic><topic>Geodesy</topic><topic>Geology</topic><topic>glacier mapping</topic><topic>glacier mass balance</topic><topic>Glaciers</topic><topic>Letter</topic><topic>Mass balance</topic><topic>Mass balance of glaciers</topic><topic>mountain glaciers</topic><topic>Mountains</topic><topic>Remote sensing</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florentine, Caitlyn</creatorcontrib><creatorcontrib>Sass, Louis</creatorcontrib><creatorcontrib>McNeil, Christopher</creatorcontrib><creatorcontrib>Baker, Emily</creatorcontrib><creatorcontrib>O'Neel, Shad</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of glaciology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florentine, Caitlyn</au><au>Sass, Louis</au><au>McNeil, Christopher</au><au>Baker, Emily</au><au>O'Neel, Shad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to handle glacier area change in geodetic mass balance</atitle><jtitle>Journal of glaciology</jtitle><addtitle>J. Glaciol</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>69</volume><issue>278</issue><spage>2169</spage><epage>2175</epage><pages>2169-2175</pages><issn>0022-1430</issn><eissn>1727-5652</eissn><abstract>Innovations in geodesy enable widespread analysis of glacier surface elevation change and geodetic mass balance. However, coincident glacier area data are less widely available, causing inconsistent handling of glacier area change. Here we quantify the bias introduced into meters water equivalent (m w.e.) specific geodetic mass balance results when using a fixed, maximum glacier area, and illustrate the bias for five North American glaciers. Sites span latitudes from the northern U.S. Rocky Mountains (48°N) to the Central Alaska Range (63°N) between 1948 and 2021. Results show that fixed (maximum) area treatment subdues the m w.e. mass change signal, underestimating mass balance by up to 19% in our test cases. This bias scales with relative glacier area change and the mass balance magnitude. Thus, the bias for specific geodetic mass balances will be most pronounced across rapidly deglaciating regions. Our analysis underscores the need for temporally resolved glacier area in geodetic mass balance studies.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jog.2023.86</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4170-0428</orcidid><orcidid>https://orcid.org/0000-0002-9185-0144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1430
ispartof Journal of glaciology, 2023-12, Vol.69 (278), p.2169-2175
issn 0022-1430
1727-5652
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0d079ba073ca42ac8af2133ea1b3592c
source Cambridge Journals Online; Publicly Available Content Database
subjects Balance studies
Bias
Geodesy
Geology
glacier mapping
glacier mass balance
Glaciers
Letter
Mass balance
Mass balance of glaciers
mountain glaciers
Mountains
Remote sensing
Time series
title How to handle glacier area change in geodetic mass balance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20handle%20glacier%20area%20change%20in%20geodetic%20mass%20balance&rft.jtitle=Journal%20of%20glaciology&rft.au=Florentine,%20Caitlyn&rft.date=2023-12-01&rft.volume=69&rft.issue=278&rft.spage=2169&rft.epage=2175&rft.pages=2169-2175&rft.issn=0022-1430&rft.eissn=1727-5652&rft_id=info:doi/10.1017/jog.2023.86&rft_dat=%3Cproquest_doaj_%3E3142815581%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-61a1e454447412a9ac1077f5b94a05155077d6b5e1d40c91076b2e1fed17dd7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142815581&rft_id=info:pmid/&rft_cupid=10_1017_jog_2023_86&rfr_iscdi=true