Loading…
How to handle glacier area change in geodetic mass balance
Innovations in geodesy enable widespread analysis of glacier surface elevation change and geodetic mass balance. However, coincident glacier area data are less widely available, causing inconsistent handling of glacier area change. Here we quantify the bias introduced into meters water equivalent (m...
Saved in:
Published in: | Journal of glaciology 2023-12, Vol.69 (278), p.2169-2175 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-61a1e454447412a9ac1077f5b94a05155077d6b5e1d40c91076b2e1fed17dd7c3 |
container_end_page | 2175 |
container_issue | 278 |
container_start_page | 2169 |
container_title | Journal of glaciology |
container_volume | 69 |
creator | Florentine, Caitlyn Sass, Louis McNeil, Christopher Baker, Emily O'Neel, Shad |
description | Innovations in geodesy enable widespread analysis of glacier surface elevation change and geodetic mass balance. However, coincident glacier area data are less widely available, causing inconsistent handling of glacier area change. Here we quantify the bias introduced into meters water equivalent (m w.e.) specific geodetic mass balance results when using a fixed, maximum glacier area, and illustrate the bias for five North American glaciers. Sites span latitudes from the northern U.S. Rocky Mountains (48°N) to the Central Alaska Range (63°N) between 1948 and 2021. Results show that fixed (maximum) area treatment subdues the m w.e. mass change signal, underestimating mass balance by up to 19% in our test cases. This bias scales with relative glacier area change and the mass balance magnitude. Thus, the bias for specific geodetic mass balances will be most pronounced across rapidly deglaciating regions. Our analysis underscores the need for temporally resolved glacier area in geodetic mass balance studies. |
doi_str_mv | 10.1017/jog.2023.86 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0d079ba073ca42ac8af2133ea1b3592c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jog_2023_86</cupid><doaj_id>oai_doaj_org_article_0d079ba073ca42ac8af2133ea1b3592c</doaj_id><sourcerecordid>3142815581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-61a1e454447412a9ac1077f5b94a05155077d6b5e1d40c91076b2e1fed17dd7c3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKsn_0DAo2zN5GOz603Ej0LBi57DbDK7btk2NVsR_72pFb14Gt6ZZ955GcbOQcxAgL1axm4mhVSzqjxgE7DSFqY08pBNhJCyAK3EMTsZx2WWtQGYsOvH-MG3kb_iOgzEuwF9T4ljIuQ-Nzvi_Zp3FANte89XOI68wQHXnk7ZUYvDSGc_dcpe7u-ebx-LxdPD_PZmUXhVim1RAgJpo7W2GiTW6EFY25qm1igMGJNVKBtDELTwdR6WjSRoKYANwXo1ZfO9b4i4dJvUrzB9uoi9-27E1DlMOdxATgRh6waFVR61RF9hK0EpQmiUqeXO62LvtUnx7Z3GrVvG97TO8Z0CLascp4JMXe4pn-I4Jmp_r4Jwu0fnrc7tHu2qMtPFD42rJvWhoz_T__gvFJ180g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142815581</pqid></control><display><type>article</type><title>How to handle glacier area change in geodetic mass balance</title><source>Cambridge Journals Online</source><source>Publicly Available Content Database</source><creator>Florentine, Caitlyn ; Sass, Louis ; McNeil, Christopher ; Baker, Emily ; O'Neel, Shad</creator><creatorcontrib>Florentine, Caitlyn ; Sass, Louis ; McNeil, Christopher ; Baker, Emily ; O'Neel, Shad</creatorcontrib><description>Innovations in geodesy enable widespread analysis of glacier surface elevation change and geodetic mass balance. However, coincident glacier area data are less widely available, causing inconsistent handling of glacier area change. Here we quantify the bias introduced into meters water equivalent (m w.e.) specific geodetic mass balance results when using a fixed, maximum glacier area, and illustrate the bias for five North American glaciers. Sites span latitudes from the northern U.S. Rocky Mountains (48°N) to the Central Alaska Range (63°N) between 1948 and 2021. Results show that fixed (maximum) area treatment subdues the m w.e. mass change signal, underestimating mass balance by up to 19% in our test cases. This bias scales with relative glacier area change and the mass balance magnitude. Thus, the bias for specific geodetic mass balances will be most pronounced across rapidly deglaciating regions. Our analysis underscores the need for temporally resolved glacier area in geodetic mass balance studies.</description><identifier>ISSN: 0022-1430</identifier><identifier>EISSN: 1727-5652</identifier><identifier>DOI: 10.1017/jog.2023.86</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Balance studies ; Bias ; Geodesy ; Geology ; glacier mapping ; glacier mass balance ; Glaciers ; Letter ; Mass balance ; Mass balance of glaciers ; mountain glaciers ; Mountains ; Remote sensing ; Time series</subject><ispartof>Journal of glaciology, 2023-12, Vol.69 (278), p.2169-2175</ispartof><rights>Copyright © U.S. Geological Survey and the Author(s), 2023. Published by Cambridge University Press on behalf of International Glaciological Society</rights><rights>Copyright © U.S. Geological Survey and the Author(s), 2023. Published by Cambridge University Press on behalf of International Glaciological Society. To the extent this is a work of the US Government, it is not subject to copyright protection within the United States.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-61a1e454447412a9ac1077f5b94a05155077d6b5e1d40c91076b2e1fed17dd7c3</cites><orcidid>0000-0003-4170-0428 ; 0000-0002-9185-0144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3142815581/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3142815581?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,72960,75126</link.rule.ids></links><search><creatorcontrib>Florentine, Caitlyn</creatorcontrib><creatorcontrib>Sass, Louis</creatorcontrib><creatorcontrib>McNeil, Christopher</creatorcontrib><creatorcontrib>Baker, Emily</creatorcontrib><creatorcontrib>O'Neel, Shad</creatorcontrib><title>How to handle glacier area change in geodetic mass balance</title><title>Journal of glaciology</title><addtitle>J. Glaciol</addtitle><description>Innovations in geodesy enable widespread analysis of glacier surface elevation change and geodetic mass balance. However, coincident glacier area data are less widely available, causing inconsistent handling of glacier area change. Here we quantify the bias introduced into meters water equivalent (m w.e.) specific geodetic mass balance results when using a fixed, maximum glacier area, and illustrate the bias for five North American glaciers. Sites span latitudes from the northern U.S. Rocky Mountains (48°N) to the Central Alaska Range (63°N) between 1948 and 2021. Results show that fixed (maximum) area treatment subdues the m w.e. mass change signal, underestimating mass balance by up to 19% in our test cases. This bias scales with relative glacier area change and the mass balance magnitude. Thus, the bias for specific geodetic mass balances will be most pronounced across rapidly deglaciating regions. Our analysis underscores the need for temporally resolved glacier area in geodetic mass balance studies.</description><subject>Balance studies</subject><subject>Bias</subject><subject>Geodesy</subject><subject>Geology</subject><subject>glacier mapping</subject><subject>glacier mass balance</subject><subject>Glaciers</subject><subject>Letter</subject><subject>Mass balance</subject><subject>Mass balance of glaciers</subject><subject>mountain glaciers</subject><subject>Mountains</subject><subject>Remote sensing</subject><subject>Time series</subject><issn>0022-1430</issn><issn>1727-5652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkE1LAzEQhoMoWKsn_0DAo2zN5GOz603Ej0LBi57DbDK7btk2NVsR_72pFb14Gt6ZZ955GcbOQcxAgL1axm4mhVSzqjxgE7DSFqY08pBNhJCyAK3EMTsZx2WWtQGYsOvH-MG3kb_iOgzEuwF9T4ljIuQ-Nzvi_Zp3FANte89XOI68wQHXnk7ZUYvDSGc_dcpe7u-ebx-LxdPD_PZmUXhVim1RAgJpo7W2GiTW6EFY25qm1igMGJNVKBtDELTwdR6WjSRoKYANwXo1ZfO9b4i4dJvUrzB9uoi9-27E1DlMOdxATgRh6waFVR61RF9hK0EpQmiUqeXO62LvtUnx7Z3GrVvG97TO8Z0CLascp4JMXe4pn-I4Jmp_r4Jwu0fnrc7tHu2qMtPFD42rJvWhoz_T__gvFJ180g</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Florentine, Caitlyn</creator><creator>Sass, Louis</creator><creator>McNeil, Christopher</creator><creator>Baker, Emily</creator><creator>O'Neel, Shad</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4170-0428</orcidid><orcidid>https://orcid.org/0000-0002-9185-0144</orcidid></search><sort><creationdate>20231201</creationdate><title>How to handle glacier area change in geodetic mass balance</title><author>Florentine, Caitlyn ; Sass, Louis ; McNeil, Christopher ; Baker, Emily ; O'Neel, Shad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-61a1e454447412a9ac1077f5b94a05155077d6b5e1d40c91076b2e1fed17dd7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Balance studies</topic><topic>Bias</topic><topic>Geodesy</topic><topic>Geology</topic><topic>glacier mapping</topic><topic>glacier mass balance</topic><topic>Glaciers</topic><topic>Letter</topic><topic>Mass balance</topic><topic>Mass balance of glaciers</topic><topic>mountain glaciers</topic><topic>Mountains</topic><topic>Remote sensing</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florentine, Caitlyn</creatorcontrib><creatorcontrib>Sass, Louis</creatorcontrib><creatorcontrib>McNeil, Christopher</creatorcontrib><creatorcontrib>Baker, Emily</creatorcontrib><creatorcontrib>O'Neel, Shad</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of glaciology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florentine, Caitlyn</au><au>Sass, Louis</au><au>McNeil, Christopher</au><au>Baker, Emily</au><au>O'Neel, Shad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to handle glacier area change in geodetic mass balance</atitle><jtitle>Journal of glaciology</jtitle><addtitle>J. Glaciol</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>69</volume><issue>278</issue><spage>2169</spage><epage>2175</epage><pages>2169-2175</pages><issn>0022-1430</issn><eissn>1727-5652</eissn><abstract>Innovations in geodesy enable widespread analysis of glacier surface elevation change and geodetic mass balance. However, coincident glacier area data are less widely available, causing inconsistent handling of glacier area change. Here we quantify the bias introduced into meters water equivalent (m w.e.) specific geodetic mass balance results when using a fixed, maximum glacier area, and illustrate the bias for five North American glaciers. Sites span latitudes from the northern U.S. Rocky Mountains (48°N) to the Central Alaska Range (63°N) between 1948 and 2021. Results show that fixed (maximum) area treatment subdues the m w.e. mass change signal, underestimating mass balance by up to 19% in our test cases. This bias scales with relative glacier area change and the mass balance magnitude. Thus, the bias for specific geodetic mass balances will be most pronounced across rapidly deglaciating regions. Our analysis underscores the need for temporally resolved glacier area in geodetic mass balance studies.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jog.2023.86</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4170-0428</orcidid><orcidid>https://orcid.org/0000-0002-9185-0144</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1430 |
ispartof | Journal of glaciology, 2023-12, Vol.69 (278), p.2169-2175 |
issn | 0022-1430 1727-5652 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0d079ba073ca42ac8af2133ea1b3592c |
source | Cambridge Journals Online; Publicly Available Content Database |
subjects | Balance studies Bias Geodesy Geology glacier mapping glacier mass balance Glaciers Letter Mass balance Mass balance of glaciers mountain glaciers Mountains Remote sensing Time series |
title | How to handle glacier area change in geodetic mass balance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20handle%20glacier%20area%20change%20in%20geodetic%20mass%20balance&rft.jtitle=Journal%20of%20glaciology&rft.au=Florentine,%20Caitlyn&rft.date=2023-12-01&rft.volume=69&rft.issue=278&rft.spage=2169&rft.epage=2175&rft.pages=2169-2175&rft.issn=0022-1430&rft.eissn=1727-5652&rft_id=info:doi/10.1017/jog.2023.86&rft_dat=%3Cproquest_doaj_%3E3142815581%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-61a1e454447412a9ac1077f5b94a05155077d6b5e1d40c91076b2e1fed17dd7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142815581&rft_id=info:pmid/&rft_cupid=10_1017_jog_2023_86&rfr_iscdi=true |